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GENERAL INTRODUCTION 

Cellular manufacturing (CM) is a manufacturing philosophy and strategy for improving 

both productivity and flexibility. Cell formation (CF), the first and key problem faced in 

designing an effective CM system, is a process whereby parts with similar design features or 

processing requirements are grouped into part families, and the corresponding machines into 

machine cells. Although the CF problem has attracted much attention, most approaches have 

failed to account for the imprecise linguistics and the uncertainty inherent in real-world 

situations. The goal of this dissertation is to develop useful CF approaches to solving the CF 

problem in a fijzzy environment. 

Background 

Cellular manufacturing is a promising manufacturing philosophy and strategy for 

engaging in international competition. The use of CM can result in many benefits, e.g., 

shortened throughput, reduced work-in-process, decreased material handling, increased 

production control, and decreased scrap rate [25]. This approach has been used v/idely in 

just-in-time (JIT) production and in flexible manufacturing systems (FMS). Cell formation, 

the process of grouping parts with similar design features or processing requirements into part 

families and machines into machine cells, is the first stage in designing an effective CM 

system. 

The CF problem has attracted much attention, and great effort has been expended in the 

development of efficient procedures. Two categories can be discerned: (1) procedures based 
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on design features and (2) procedures based on processing requirements [24], Because the 

former type entails a classification and coding system that requires time and expertise to 

develop, most suggested procedures are of the latter type, which also can be divided among 

six categories based on the clustering method [4]: (1) array-based clustering, (2) hierarchical 

clustering, (3) nonhierarchical clustering, (4) mathematical programming, (5) graphic theoretic 

approach, and (6) heuristics. Or two categories can be used, viz., optimum or heuristic, 

according to the nature of the solution. Thorough review of the problem can be found in [5, 

10, 18, 24], 

Mathematical programming (MP) is one method of solving the CF problem. It can 

guarantee that the answer is optimal, and its model is the basis for other methods [5], 

According to [5], six objective functions - total costs of machine investments, total costs of 

intercell movement, total number of intercell movements, total similarity coefficients between 

parts, total distances, and total subcontracting costs - have been used frequently in CF 

modeling. Most uses are related to the problem of exceptional elements (EEs). This indicates 

that dealing with EEs is an important objective for CF. 

Many programming models for dealing with EEs have been proposed, but from Table 1 

we know that key issues of the EE problem have not yet been addressed: 

(1) Generation of an optimal CF solution and decision for the decision maker dealing with 

EEs. Four papers apply the MP approach; none, however, seems to search for the CF 

solution and to deal with EEs simultaneously. 
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Table 1. The properties of proposed approaches 

Ref. Approach Required data 

(except the machine-part matrix) 
Drawbacks 

12] Mathematical None. • It didn't consider cost factors. 

[17] Mathematical * Initial cell formation solution. 
* Acquisition cost of machines. 
* Subcontracting cost of parts. 
* Annual demand of parts. 
* Annual capacity of machines. 
* Processing time of parts. 
* Cost of intercell moving. 

* The CF must be done before the optimization of 
eliminating EEs can be performed. 

* It didn't consider tlie capacity of machines when 
accepting transfer parts. 

[23] Mathematical * Opportunity cost of parts. 
* Annual capacity of machines. 
* Annual demand of parts. 
* Processing time of parts. 

* It can't figure out tlie exact U of EEs. Thus, it 
can't consider more about the duplication of 

machine and intercellular moving of parts. 
* Tlie opportunity cost is dilTicult to obtain. 

13) Hcuristic None. * It can't obtain tlie optimal strategy to deal with 
EEs. 

18] Heuristic * Initial cell fonnation solution. 
* Batch size for producing parts. 
* Acquisition cost of machines. 
* Subcontracting cost of parts. 
* Amiual demand of parts. 
* Amiual capacity of machines. 
* Processing time of parts. 

* The CF stage must be done before the comparing 
procedure. 

* It can't deal with the combination of machine 
duplication and subcontracting. 

19] Hcuristic * Subcontracting cost of parts. * It only considers subcontracting. 

im Heuristic * Subcontracting cost of parts. * It only considers subcontracting. 

113] Heuristic * Similarity cocfllcients. 

* Costs of intercell and intracell 
moving. 

* It only considers interccll transfer. 

[14] Heuristic None. * It didn't consider cost factors. 

115) Heuristic * Acquisition cost of machines. 
* Cost and distance of intercell moving. 

* It didn't considers subcontracting. 

120] Heuristic * Cost of intercell moving. 
* Annual demand of parts. 
* Processing time of parts. 

* Acquisition cost of machines. 

* It didn't considers subcontracting. 
* It allocates parts to a set of existing cells. 

17] Simulated 
annealing 
(SA) 

* Cost of intercell moving. 
* Acquisition cost of machines. 

* It didn't consider subcontracting. 

119] Tabu search 
&SA 

* Cost of intercell moving. 
* Acquisition cost of machines. 

* It didn't considers subcontracting. 

121] Genetic 
algorithm 
(GA) 

* Amiual demand of parts. 
* Amiual capacity of machines. 
* Processing time of parts. 

* It can't be applied in the MP approach. 

122] Network * Processing time of parts. * It didn't considers the cost factors. 
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(2) Combination of the three policies (a) intercell moving, (b) machine duplication, and (c) 

subcontracting for particular EE parts. Only [17] considers these three policies, but it 

combines (a) and (b), not all three policies for a particular part. 

(3) Calculation of the number of machines needed by considering the maximum utilization of 

machines and the available capacity of a machine that can be transferred for intercell 

moving. This is important information in the estimation of machine investment cost and 

intercell movement cost. So far, however, no papers have considered the available 

capacities of machines when accepting part transfers. 

(4) Obtaining of a trade-off value between the total costs of dealing with EEs and group 

efficacy (GE), two conflicting performance measures in the CF results. 

Furthermore, most approaches proposed thus far have been based upon unrealistic 

assumptions, e.g., (1) the coefficients used in the decision are known and constant, (2) the 

objective function and constraints can be defined precisely, and (3) the clustered families/cells 

are mutually exclusive. In practice, however, most objectives and constraints are quite 

difficult to define precisely. As a result, many models never have been used in practice. 

The major benefit of fuzzy set theory, a new algorithmic approach that has been the 

subject of intense study over the past decade, is that it allows and accounts for the ambiguity, 

incomplete information, and uncertainty inherent in most real-world situations [27]. There has 

been research dealing with fuzziness of the CF problem. (See Table 2 for a summary) The 

scope of these studies, however, is limited in the sense that (1) most can be used only to form 

part families [1, 12, 26, 28] or to form part families and machine cell sequentially [6], (2) 
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Table 2. Fuzzy Methodologies for Manufacturing C.F. 

Data Clustering 
method 

Type of 
clustering 

Remarks Refs. 
Type Source 

Clustering 
method 

Type of 
clustering 

Remarks Refs. 

Fuzzy 
data 

Part 
feature 

Hierarchical 
clustering 

Form part families 
only 

* Threshold value (similar
ity) for grouping is fixed. 

(1) 

Crisp 
data 

Process Fuzzy clustering Form part families/ 
machine cell sequ. 

* Allow for disjoined cells 
* # of cells is fixed. 

(6) 

Fuzzy 
data 

Part 
feature 

Fuzzy clustering Fonn part families 
only 

* Allow for disjoined cells 
* # of cells is fixed. 

(12) 

Fuzzy 
data 

Part 
feature 

Fuzzy clustering Form part families 
only 

* Allow for disjoined cells 
* # of cells is fixed. 

(26) 

Fuzzy 

data 

Process 
Single linkage Form part families 

only 
* Threshold value (similar

ity) for grouping is fixed. (28) Fuzzy 

data 

Process 

Rank order 
clustering 

Form part families/ 
machine cell simu. 

(28) 

some apply only traditional approaches to deal with fuzzy data [1, 28], and (3) most deal only 

with fuzzy variables, i.e., with the possibility of disjoined cells [6, 26], 

No study has attempted to deal with the following two main critical difficulties in 

modeling a real-world problem by means of the MP approach: (1) vagueness - either goal or 

constraints often are represented by a vague linguistic form, e.g., "We want the profit 

essentially larger than or equal to a dollars" and (2) ambiguity - the parameters are known 

inexactly, e.g., "The profit rate v^ill be almost b ($/min)." 

This dissertation is motivated by studies of the following CF problems; 

(1) Most models cannot group parts and machines to cells and solve the CF problem for 

dealing with EEs simultaneously. 
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(2) No model attempts to obtain the trade-off between minimizing total cost of dealing with 

EEs and maximizing GE. 

(3) None has attempted to deal with vagueness and ambiguity by modeling a CF problem by 

means of the MP approach. 

(4) No efficient heuristic algorithm has been developed to solve the CF problem of dealing 

with EEs. 

Objectives of the Dissertation 

The main objective of this dissertation is to develop useful fuzzy mathematical 

programming (FMP) models to solve the CF problems mentioned in the last section. 

Following the basic process of implementing FMP, the first two objectives are constructed. 

Furthermore, to develop a complimentary approach for the large problem, a third objective 

also is planned: 

(1) To develop a linear programming (LP) model for simultaneously addressing two problems: 

(a) grouping parts and machines into ceils and (b) solving the CF problem for dealing with 

EEs. Therefore, the fuzzy linear programming (FLP) methodology is applied to solve 

flizzy CF problems involving situations such as those in which "The number of cells is 

around 3" or "The maximum number of machines in each cell is around 4." Because 

future demand and resources are fuzzy in nature and because most decision makers are 

unable to specify goals exactly, the FLP approach to solving the CF problem is new. 
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Fuzzy set theory will be applied to convert the FMP model to a conventional 

programming model. 

(2) To develop a goal programming (GP) model able to obtain the trade-off between 

minimizing total cost of dealing with EEs and maximizing GE. Then, to use fuzzy 

multiobjective linear programming (FMLP) to find the optimal trade-off between two 

conflicting goals in the GP model and to compare the performance with that of GP 

approach. 

(3) To develop an efficient heuristic genetic algorithm (HGA) to solve the problem and to 

compare the performances with those of traditional MP, FLP and FMLP. Fuzzy 

programming effectively deals with fuzziness embedded in a problem, but when the 

problem becomes bigger, mathematical formations require a great amount of execution 

time. Hence, an efficient heuristic algorithm such as the GA is needed. However, GA 

performance depends on proper parameters [16]. The wrong one will lead to poor 

computational performance. A new heuristic genetic algorithm will be proposed to 

improve executing efficiency. 

Dissertation Organization 

The remainder of this dissertation, which consists of four papers, is organized as follows. 

Paper I recently was submitted for publication after being revised based upon an IEEE 

FUZZY conference paper presented in June 1994. This paper illustrates how the FLP 

approach can be used to form manufacturing cells in a fuzzy environment. It also examines 
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the impact of membership fijnctions and operators on computational performance. The study 

shows that FLP not only provides a better and more flexible way of representing the problem 

domain but, with the newly proposed operator - min-add, also leads to improved overall 

performance. This paper is being reviewed by the HE Transactions Journal. 

Paper II is associated with the achievement of the second objective. An improved 

formula for computing the similarity coefficient (SC) between two parts is proposed to relate 

GE value and SC value. An FIVILP approach also was applied to model CP problems with 

two conflicting objective functions based on the GP model. Like the first paper, this paper 

shows that FMLP with a min-add operator leads to improved overall performance. 

Paper III proposes a new heuristic GA to optimize the total costs of dealing with EEs. 

New crossover and mutation heuristic operators strengthen GA performance to the extent that 

the GA outperforms MP and the traditional GA for all 17 different data sets. This paper 

verifies that the proposed heuristic GA can meet the critical demands of real-world 

applications. 

Paper IV extends paper III by using the proposed heuristic GA to solve the same problems 

as are solved in papers I and II. The advantage of the heuristic GA again is confirmed. 

In this dissertation, background and objectives are presented before the four papers just 

described. General conclusions, contributions of this dissertation, and fijture research are 

summarized after them. All references of these sections are listed at the end of the 

dissertation in the bibliography. Additional references are listed at the end of each paper. 

Literature reviews appear in their respective papers. 
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L OPTIMIZATION OF MANUFACTURING CELL FORMATION 

WITH FUZZY LINEAR PROGRAMMING 

A paper submitted to HE Transactions 

Ciiang-Chun Tsai, Chao-Hsien Chu, and Thomas Arnold Barta 

Abstract 

Cell formation (CP) has recently received much attention in education and industry be

cause of its strategic importance to modern manufacturing theory. In this paper, a sophisti

cated linear programming model is proposed to simultaneously form manufacturing cells and 

minimize the total costs of dealing with exceptional elements. Also, we will illustrate how a 

flizzy linear programming (FLP) approach can be used to solve the CP problem in a fuzzy en

vironment, propose a new fuzzy operator, and examine the impact of different membership 

functions and operators on computational performance. Our study shows that FLP not only 

provides a better and more flexible way of representing the problem domain, it also leads to 

improved overall performance. 

Introduction 

Applying mathematical programming models to the solution of real-world problems is a 

challenging task because decision makers find it difficult to specify goals and constraints ex

actly and because the parameters used in these models cannot be estimated precisely. Over 

the past 25 years, fijzzy set theory has been applied to many disciplines, including operations 

research, control theory, and artificial intelligence/expert systems dealing with situations or 



www.manaraa.com

10 

problems involving ambiguities and fuzziness. Fuzzy linear programming is one area in which 

fuzzy set theory has been explored widely. For instance, FLP has been applied to problems 

regarding transportation [4], location planning [7], project networks [8], resource allocations 

[26], air pollution regulations [30], and media selection for advertising [36], Although there 

has been intense study of the application of fuzzy set theory to industrial engineering [11] and 

to operations management [15], very few studies have attempted to use FLP in the design of 

manufacturing systems. This paper will focus attention on applying FLP to the design of cel

lular manufacturing systems, specifically in terms of CF problems. 

Cell formation is the process of grouping parts with similar design features or processing 

requirements into parts families and the corresponding machines into machine cells. Over the 

past decade, the problem has received much attention because of its strategic importance to 

modern manufacturing theory. Extensive review of CF problems can be found, for example, 

in [5, 29, 33]. Most studies, however, have focused on the process of forming manufacturing 

cells. If any EE existed, it was removed manually [5, 17] or dealt with after initial cells were 

formed [28], No study has attempted to handle EEs automatically during manufacturing CF. 

Furthermore, most studies have focused on using traditional analytical or heuristic methods to 

model the problem; a few studies have attempted to model the problem in a fuzzy environ

ment, but their scope has been limited. Most studies form only part families [22, 37, 40] or 

form part families and machine cells sequentially [6], Other studies apply only traditional ap

proaches to fijzzy data [40], and most studies deal only with fuzzy variables [6, 37]. No study 

has attempted to deal with the CF problem with fuzzy goals, fuzzy constraints, or fuzzy pa
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rameters. Fuzzy constraints are the most important component of the CF problem because 

most algorithms are more sensitive to the number of cells that they can form and to the num

ber of machines or parts allowed in each cell; that is, if these parameters are selected improp

erly, clustering results may be unacceptable [5], 

The purposes of this study are twofold: first, to develop a more relatively sophisticated 

linear programming (LP) model able simultaneously to form manufacturing cells and to mini

mize the cost of eliminating EEs; second, to use FLP to model CF problems in a fuzzy envi

ronment. Because membership functions and operators tend to influence computational per

formance, this study also will assess the relative performances of two different types of mem

bership functions. An improved fuzzy operator also will be proposed. Its performance will be 

evaluated and contrasted with that of three other commonly used operators. 

Taxonomy of Fuzzy Linear Programming 

In a fijzzy environment, mathematical programming models must take into consideration 

fuzzy constraints, vague goals, and ambiguous parameters. Many FLP approaches have been 

developed for these combinations and can be classified according to these criteria (a detailed 

discussion of the FLP procedure can be found, for e.xample, in [20, 43]): 

1. Problem style. Approaches can be classified as either vagueness or ambiguity, depending on 

whether goals, constraints, or parameters are fuzzified [14, 20]. If goals or constraints are 

defined subjectively by the decision maker, the programming is called vagueness or flexibil

ity. The solution procedure for this type of model depends on model style. Ambiguity oc

curs when parameters are known inexactly and their membership fijnctions are relative to 
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the degree of possibility of occurrence; the ambiguity problem, therefore, also is called pos

sibility programming [14], Different approaches have been developed for cases in which 

fijzzy parameters appear. For example, when they have appeared in the single objective 

function, parametric programming [2] and dual theory [32] have been applied. If there are 

multiobjective functions, a feasible and /? efficiency [24] can be used. When the fuzzy pa

rameters are in the constraints, fuzzy ranking [10, 19, 27, 31] and fuzzy addition [1] can be 

used. 

2. Model style. The vagueness problem can be classified further as symmetric or asymmetric 

[42, 43], h. symmetric model is designed to solve problems with both a fuzzy objective and 

fuzzy constraints. Zimmermann's method [42] or Carlsson's parametric approach [2] can be 

applied to solve the problem. On the other hand, the asymmetric model is used to solve 

problems with either a fuzzy objective or fuzzy constraints. The solving approach can refer 

to Werners's approach [34] or to parametric approaches [3, 32], or can add a penalty func

tion to the objective function [12]. 

3. Solving process. Both flexible and ambiguous styles of problems can be divided further into 

interactive or traditional styles, according to the solving procedure used [18, 20]. The in

teractive concept provides for the decision maker a learning process about the system. In 

such an environment, the decision maker can learn to establish suitable membership func

tions and to recognize the importance of factors in the system. Eventually, appropriate so

lutions can be devised by means of several interactions. Optimizing a given system [18, 20], 

which usually was done in a traditional programming approach, becomes unnecessary. 
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Key Issues of Applying Fuzzy Linear Programming 

Although FLP is different from other fuzzy applications such as fuzzy inference and fuzzy 

ranking [43], two factors common to other fuzzy applications deserve attention. 

1. Membership function. The ivenibership function is a tool to incorporate flizziness or to 

represent the linguistic variables for applications of fuzzy set theory. There have been 

many types of membership functions used in practice [20, 43]. A good membership func

tion often has the following properties [9]: (a) it has a theoretical basis, (b) it can be cal

culated and fit to the problem easily, (c) it can be described in terms of a few parameters, 

(d) its parameters are meaningful to the problem, (e) it has a linear form, and (f) it has a 

closely connected membership and operator. Five types of membership function - linear 

nonincreasing, triangular, trapezoidal, exponential, and S-shaped - often have been used in 

FLP applications. The first three have linear forms. Most previous papers have applied 

the linear nonincreasing function [8, 26, 30] because they have had to minimize the objec

tive function and to use vague linguistics such as "essentially no more than " or "less than" 

some value. The trapezoidal function and the triangular function [4, 36] normally are 

adapted when such vague linguistics as "almost," "about," or "nearly equal" are used. The 

remaining nonlinear membership functions - the exponential function [7, 23] and the S-

shaped flinction [21] - are suitable representations for certain real-life cases such as cost 

or utility fianctions, 

2. Operator. The operator, which defines the intersection of fuzzy sets, is a mechanism for 

converting FLP to traditional mathematical programming sc that the FLP can be solved by 



www.manaraa.com

14 

traditional LP software. Because most vagueness programming approaches have the 

membership functions in the goal or constraints, a suitable operator must be chosen to ag

gregate all fuzzy membership functions. No operator is needed for ambiguity program

ming, however, because no fuzzy membership function needs to be aggregated. According 

to Zimmermann [43], a good operator normally has eight properties: (a) axiomatic 

strength, (b) empirical fit, (c) adaptability, (d) numerical efficiency, (e) compensation, (f) 

range of resulting set, (g) aggregating behavior, and (h) required scale level of membership 

functions. Table 1 shows those operators that often have been applied on FLP. The first 

five operators have simplistic linear forms after transformation. Their generic formats are 

given in Appendix A, and their characteristics are discussed next, (a) Even though the 

max-min operator is noncompensatory in nature, it has been used popularly in literature. 

This is because it uses the simple and easy-to-understand logic statement and. (b) Both 

min-bound sum and compensatoi^ and are positively compensatory operators and follow 

the same aggregate aile combining min and max operations by means of a weighting fac

tor. But these operators cannot guarantee an efficient alternative because their aggregated 

results fail to consider nonextreme values [35], (c) and is a positively compensatory op

erator proposed by Werners to remedy the aforementioned deficiency of min-bound-sum 

and compensatory and operators, (d) The add operator is negatively compensatory [16]. 

By summing all membership functions to the objective function, the add operator is much 

easier to understand; the range of its aggregated result, however, may be larger than one 

(1.0), and sometimes its clustering result may be affected by constraints. Because every 
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Table 1. Summary of Operators Used in the FLP Studies 

Operator Formulation" Compensatory ^ Format after 
Transformation 

Reference 

Max-min Ud = MinU s No Linear [4,8,26,30,36] 

Min-bound-sum 
t 

U D = r Z U s )  
s = 0 

U D = y  

Positive Linear [25] 

Compensator}' 
and 

t 
U D = r Z U s )  

s = 0 
U D = y  Positive Linear [41] 

Fuzzy and 
{ a n d )  

U D  =  r  +  i u s  
s = 0 

/ 

Ud -^ ZUs  
s = 0 

Positive Linear [35,41] 

Add 

U D  =  r  +  i u s  
s = 0 

/ 

Ud -^ ZUs  
s = 0 

Negative Linear [30] 

Product 
t 

u d =  n^.v 
.S— 1 

Negative Nonlinear [23,40] 

r i J o  =  i  n(i-^.v)f 
.V = 0 i' = 0 

Positive Nonlinear [25] 

if The objective is to maximize Ud -

+ The definitions of compeusatoyy and of negative compensatory are adapted from [16], 
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membership flinction and operator has unique features, how to select a suitable member

ship function and/or operator long has been an issue deserving extensive study. In this pa

per, two membership functions - linear nonincreasing and triangular - will be examined 

because they are more appropriate for the CF problem. Also, among the five linear-form 

operators, three - max-min, and, and add - will be examined because of their simplicity. 

The min-bound-sum and compensatory and operators were excluded from comparison be

cause of the weaknesses already mentioned. The performances of these operators will be 

evaluated along with a new operator proposed in this study. 

Notation Used in the Formulations 

The following notation was used to model CF problems: 

Index Set 

/ machine index; /=!, m 

j part index;7 =1, n 

k cell index; ^1, c 

1 index of membership functions; /= 0, c 

s index of fuzzy constraints; i = 1, c 

Parameters 

Aj periodic cost of acquiring machine type / 

Q periodic capacity of machine type / 

Dj periodic forecast demand for part j 

Ij incremental cost for moving a unit of part j within two cells 
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NM maximum number of machine types allowed in each cell 

^0 tolerance value for the fuzzy objective function (cost) 

Pr tolerance values for the fuzzy constraints {NK'f) 

Pjj processing time of machine type / needed to produce part j 

Y parameter used in fuzzy modeling 

Sj incremental cost of subcontracting a unit of part j for an operation 

SP set of pairs (/j) such that cijj = 1 

UCij utilization capacity of machine type /' for parts j. Value can be calculated by means of 

t h e  e q u a t i o n  P j j  x  D  j j C j  

Uoix) membership function of aggregated results 

Usi^) sih membership flinction 

Zf optimal solution using the maximum value of NM 

Z' optimal solution using the minimum value of NM 

Decision Variables 

IC]i =1, if cell k is formed; 0, otherwise 

Mij]̂  number of machines / dedicated to cell k for producing part j 

Ojjj( units of part j to be subcontracted as a result of machines type / not being available 

within cell k 

Qi number of machines type / needed to process corresponding parts in machine cell 

Rjj^ number of machines type i to be dedicated in cell k 

Ujjk =1, ifXjir = 1, and Yjj^ = 0; 0 otherwise 
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Vjjk =1, if Yj]f= 1, and ^ otherwise 

Xjjf =1, if machine i is assigned to cell k, 0, otherwise 

Yjj( =1, if part j is assigned to cell 0, otherwise 

Zjjf( number of intercellular transfers required by part j as a result of machine type / not 

being available within part cell k 

X minimum value of all membership functions 

a I extra variables used in the fuzzy and operator 

Traditional Mode! 

The proposed model is an extension of the model used in [28], in which two major weak

nesses can be found. First, the CF stage must occur separately, before optimization through 

elimination of EEs. Second, the model does not consider machine capacity when accepting 

part transfers. The proposed model remedies both deficiencies. Not only is the best decision 

arrived at regarding assignment of parts and machines to cells such that the total cost of deal

ing with EEs can be minimized, but also the available capacity and the investment cost of the 

machines are considered. The needed number of machines consequently can be determined 

and minimized. The formulation is as follows: 

M I N  ' Z . l L A j R j / c  +  T ,  Z S S j O i j k  (0 
k i  k { i , j ) e s p  k { i j ) e s p  

Subject to: 

(2) 
k  =  \  

Z Yjk=l^j (3) 
k ^ \  
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m  
y.Xik^NM,Vk (4) 

/ = 1 

1 1 I 
^ik yjk+ Zijk + Oijk +-—Mijk-Uijk =0, \/{ij)esp,\/k (5) 

Z Mijk ^ Rik, V/, yk (6) 
0',;)es/J 

Q j <  s U C j j { \ - i : V i j k ) + i y i  (7) 
i i j ) e s p  k  

Z Z ^Zijk^Qr 2 uCij(\-^Vijkiyi (8) 
k { i , j ) e s p ' - i  ( i j ) e s p  k  

Xik,Yjk,Uijk,Vijk = Qorl; = general integer (9) 

Three types of costs associated with EEs are to be minimized in equation (1). The first 

cost is that of duplicating a machine. This cost subsumes the purchase, maintenance, salvage, 

and machine life. The second cost includes intercellular transfers for the EE. The last cost is 

that of subcontracting. Constraints (2) and (3) ensure that each machine and part is assigned 

only one cell. Constraint (4) prevents the assignment of more than NM machines to each cell. 

This constraint also prevents all machines and parts from being assigned to a single cell. 

Constraint (5) combines two equations: 

X i k - Y j k  +  U i j k - V i j k ^ O ,  y { i , j ) e s p , \ f k  

Zijk + Oijk + -^Mijk = D jUijk, V(/,y) €sp. \fk 
P'j 

and ensures that an EE either is an exceptional machine (a machine to be duplicated) or an 

exceptional part (a part to be transferred or subcontracted). Furthermore, the constraint 

guarantees that the demand of exceptional part j can be shared by the duplicated machine /, 
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transfer within cells, and subcontract. Constraint (6) calculates the number of machines type / 

needed to be dedicated within cell k to producing the EEs, where Mjj]^ is a real variable repre

senting the utilization capacity of a machine type / dedicated to process part j in cell k. Con

straint (7) determines the numbers of machines type / needed in each cell. The constraint 

sums the utilization capacity of machines type / for all relative parts ( D UCij), not the 
( i j ) ^ s p  

exceptional elements ( -Y.V ijk)- Constraint (8) ensures that the number of intercellular 
k 

transfers between machines type /' do not exceed available machine capacity. The maximum 

available capacity of machine type / (machine unit) for the relative parts to be transferred is 

equal to Cj!Pij times the right side of Equation (8). 

Fuzzy Models 

The aforementioned traditional model assumes that objective functions and constraints 

can be defined precisely; they cannot be, hovv'ever. For example, the right-hand side of con

straint (4) often is fuzzy and can be expressed as 

m ^ m 
Z X i k ^ N M , \ l k  o x  Z X i k  =  N M , \ J k .  (10) 

/ - 1 / = 1 

And according to Werners' approach [34], (1) can be fuzzified as ; 

ZZAiRik+Z 2 IjZijk + T Z SjOijk'^Z^=Z^-Po (11) 
k i  k { i j ) e s p  k ( i , j ) e s p  

Here, the value ofZ^ is the feasible value of the best goal, which can be obtained by solving 

the traditional model with the maximum value of NM. t} is the feasible value of the worst 

goal, which can be obtained by solving the same model with the minimum value of NM. To 
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convert the fuzzy model to a traditional formulation, two tolerance values - Pf, and Pq  -

must be determined in advance, p,., for equation (10), normally is determined by the decision 

maker, according to problem characteristic or experience. Pq for equation (11) can be de

termined from the budget limit and its allowance or can be set as a value equal to sub

tracted from z\ Fuzzy objective function (11) and fozzy constraint (10) then can be con

verted to the conventional formulation by means of a suitable operator. As mentioned, two 

membership fijnctions - linear nonincreasing and triangular - and four operators - max-min, 

and, add, and a newly proposed operator - will be examined. Additionally, if the member

ship function is linear and nonincreasing, the transformation formula in Zimmermann [43] will 

be used; otherwise, the formula in Yang and Ignizio [38] will be. Consequently, there are 

eight cases needing to be examined for (10) and (11). The first two cases are the combina

tions of max-min operator and different membership functions, cases 3 and 4, the combina

tions of the and operator and different membership functions. Cases 5 and 6 are the combi

nations of the add operator and different membership functions. Cases 7 and 8 combine the 

proposed operator with different membership flmctions. The generic formation can be found 

in Appendix A. Equivalent formulations for each case now are summarized. Please note that, 

for each case, complete formulation includes those equations noted below as well as equations 

(2), (3), and (5) - (9). 

Case 1: Max-min operator and linear nonincreasing membership fijnction. The equivalent 

formulation can be obtained as 

M A X X  (12) 



www.manaraa.com

subject to 

I I j Z i j k  +  T  I S j O i j k  +  ̂ P o ^ Z ^  +  P o  (13) 
k  i  k  ( / ,  j )  e s p  k  ( ; ,  J )  e  s p  

m  
ZA'/yt + ̂ Pr^'^A^ + P/-. Vit (14) 

/ = 1 

hck^l (15) 
k = \ 

m 
j:Xik^2lC/c,^k (16) 

/=:1 

0<2<1. (17) 

Constraint (15) prevents the formation of fewer than two cells, and constraint (16) 

prevents the assignment of fewer than two machines in each cell formed. There, the 

ICk variables in equations (15) and (16) are added either to allow a lower-bound value 

of the number of machines in each cell when there is a linear nonincreasing member

ship function or to prevent the grouping of parts and machines into exactly "C" cells 

when there is a triangular membership function. Consequently, the number of cells 

permitted ranges from "2" to "C," and when linear nonincreasing membership is used, 

the number of machines allowed in each cell ranged from "2" to "M</ + Pf. 

Case 2:Max-min operator and triangular membership function. The equivalent LP formulation 

consists of equations (12), (13), (14), (15), (17), and (18): 

m 
ZXik-NMx iCk-XPr>-Pr,'^k . (18) 

/ = 1 

The difference between cases 1 and 2 is that the triangular membership function 
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requires one additional constraint (18) to define the minimum value of 2 Xik • 

i = \ 

Case 3:The arid operator and the linear nonincreasing membership function. The equivalent 

LP formulation consists of equations (19), (15), (16), (20), (21), (22), and (23). 

} ^ I A X a  +  ( \ - y ) ~  la/ (19) 

subject to 

ILHAiRik+I, 2 IjZijk + i: E SjOijk + aPo + aoPo<Z^ + Po (20) 
k  i  k ( i , j ) e s p  k  ( i  J )  e s p  

m  
ZXik + ccPr + akPr^^^^ + Pr^^l^ (21) 

/ = 1 

a + a/<l,/ = 0,...c (22) 

a/>0, 0< «<!,;' <1. (23) 

Because no simple rule can be applied to decide the value of y, determining it be

comes a major bottleneck in the use of the and operator. An experiment has been 

conducted to identify the nature of the y value. Results are discussed later. 

Case 4:Theo«^/ operator and triangular membership function. The equivalent LP formulation 

can be expressed as (24), (15), (20), (21), (25),(26), and (23). 

1 2c 
M A X a ^ { \ - r ) -  Z«/ (24) 

a  +  a i < \ , l  =  0 , . . 2 c  (25) 

m 
Z  X i k - N M x i C k - ^ x  P r  +  P y  ^  P r  >  ( 2 6 )  

; = 1 
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Case 5: Add operator and linear nonincreasing membership function. The equivalent LP for

mulation consists of equations (27), (15), (16), (28), and (29): 

ZZAiRik+l. 2 IjZijk + Z S SjOijic-Zo 
Min— ^ k { i , j ) e s p  ^  ^  ^  

^0 s = \ P r  

subject to 

m 
ZXik-Sk^NM,yk (28) 

/ = 1 

Ss^Pr, s^l -c. (29) 

Case 6:Add operator and triangular membership function. The equivalent LP formulation 

consists of equations (30), (15), (28), (31), and (32): 

H H A i R i k  +  T .  S  I j Z j j k  +  H  2  S j O j j l c ~ Z Q  
A i  k { i , j ) ^ s p  k { i j ) e s p  ^  ^  ̂  

I'O s=^\Pr 

(30) 

m 
i:Xik + Sc + k^NM* ICk^^k (31) 

i = \ 

Ss^Pr, s=\...2c. (32) 

Case 7:The proposed operator (denoted as Add - niin) and linear nonincreasing membership 

function. The proposed operator applies the min operator for the fuzzy constraints. 

Thus, the aggregated membership function becomes 

U D ^ O - S ( U a  +  M i n U s ) .  (33) 
5 = 1 

The range of Ud  is [0, 1]. The model after aggregation is a linear form, and the com

pensatory property is better than ihe max-min and add operators. The equivalent 
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transformed formulation is 

M A X U g  +  ̂  (34) 

Subject to: 

I L H A i R i k  + Z  Z I j Z i j k  + Z  Z S j O i j k - Z o  
e s p  k { i , J ) e s p  ^ ^ 5 )  

m  
• Z X i k - N ^ i  

>A,VA-. (36) 
P r  

If we insert constraint (35) into (34), the fuzzy objective function becomes (37). The 

flizzy constraints include (14), (15), (16), and (17). 

HTu Ai RjjiZ / jT-ijii^Y^ S SjOijli~^P q- P'7) 
k i  k { i j ) & s p  k { i j ) s s p  

Case 8;The proposed operator and triangular membership function. The objective function of 

the equivalent LP formulation is the same as in (37), and the constraints are equations 

(14), (15), (17), and (18). 

Data Sets for Numerical Computations 

To evaluate the performance of the proposed fuzzy models, three data sets with different 

percentages of EEs are used. Here, the percentage of EEs is defined as their number divided 

by the total number of elements in a data set. Data set I, adapted from [28], has the highest 

percentage of EEs (28.6%) and can be formed into two or three cells. Table 2 lists the proc

essing time of each part, the costs involved, the part demand, and the machine capacity of this 

data set. Data set II, with an intermediate EE percentage (18.8%), also can be formed into 
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Table 2: Numerical Values for Data Set I 

Parts 

1 2 3 4 5 6 7 8 9 10 Ai Q 

M 1 2.95 0 2.2 0 0 0 0 0 0 4.61 $50,784 2000 

a 2 2.76 5.18 1.89 3.89 0 5.14 0 0 0 0 $67,053 2000 

c 3 5.54 4.29 0 0 0 0 0 0 0 0 $43,944 2000 

h 4 2.91 0 0 1.97 2.59 4.01 0 2.7 0 0 $67,345 2000 

i 5 0 0 0 4.28 0 4.51 0 0 0 0 $42,414 2000 

n 6 1.92 0 0 0 0 0 2.23 0 5.52 0 $75,225 2000 

e 7 0 0 0 0 3.4 0 1.16 4.72 0 2.49 $52,741 2000 

s 8 0 5.32 0 0 0 0 0 3.75 3.85 0 $63,523 2000 

9 0 0 0 0 0 0 4.04 0 0 1.83 $50,632 2000 

$4.20 $4.30 $3.50 $4.40 $5.00 $3.90 $4.40 $4.60 $5.00 $5.00 

32128 27598 20651 11340 18707 17040 46196 45384 16409 22000 

h $3.70 $2.80 $2.80 $3.30 $2.80 $3.50 $2.80 $2.60 $3.40 $3.20 



www.manaraa.com

27 

two or three cells. The machine/part matrix of this data set was from [13], but the other data 

were generated randomly by a computer program based on the mean value and the standard 

deviation of data set I. The percentage of EEs of data set III is 3.3%, the lowest percentage. 

Two, three, or four cells can be formed in this data set. The machine/part matrix of data set 

III was from [17], and the other related data also were generated randomly. For all data sets, 

the maximum number of machines allowed in each cell is "no more than four" or "around 

four." Thus, for the traditional model, the right-hand side of equation (5) is a fixed number 

"four"; under the fuzzy environment, however, we can use fuzzy intervals to represent these 

numbers. 

Computational Results 

All models were solved by running the LINDO (linear interactive and discrete optimizer) 

package on an IBM compatible 486 DX2 66 MHZ computer. Clustering performances were 

measured in terms of EE numbers, executing pivots (CPU time), and total costs of dealing 

with EEs. Table 3 summarizes computational results from nine different cases. Cases 1 to 8 

already have been discussed. Case 9 is the traditional CF model included for purposes of 

comparison. Several observations can be made based on the information in Table 3. 

First, though the computational CPU times of the fuzzy models differed from case to 

case, clustering results, except for case 5 of data set III, are far better than those obtained for 

thetraditional model. This can be seen from the fact that EE number and total costs are 

smaller for all fuzzy models except case 5. The clustering results of case 5 actually are the 

same as those for the traditional model. 
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Table 3. Computational Results for Traditional and Fuzzy Models 

Case Data Set I [ 28 Data Set II [ 13 |  Data Set III [ 17 ] 

Membership Pivots Cost of Pivots Cost of Pivots Cost of 
Operator Fiuictions NMc (CPU #of Dealing NMc (CPU #of Dealing NMc (CPU #of Dealing 

Time) EE with EE Time) EE with EE Time) EE with EE 

i. Max- Linear (4.5) 8652840 6 $371,297 (4.5) 1153709 5 $221,930 (5,5.4) 607414 2 $103,370 

niin nonincreasing (31:28:39) (3:53:54) 
(5,5.4) 

(3:45:43) 

2. Max- Triangular (4.5) 6548046 6 $371,297 (4.5) 892312 5 $221,930 (5,5,4) 127757 2 $103,370 
min (25.41:09) (2:48:54) 

(5,5,4) 
(0:46:19) 

3. cincl Linear (4.5) 2825289 6 $301,695 (4.5) 198635 5 $168,200 (5,5,4) 233673 2 $67,758 
nonincreasing (9:38:35) (0:36:55) (1:27:48) 

4. and Triangular (4.5) 416468 6 $301,695 (4.5) 64639 5 $168,200 (5,5,4) 152506 2 $67,758 

(1:23:34) (0:13:02) 
(5,5,4) 

(0:59:06) 

5. Add Linear (4.5) 239216 6 $301,695 (4.5) 56757 5 $168,200 (4,4, 139872 4 $186,740 
nonnicreasnig (0:41:16) (0:08:02) 4,2) (0:52:57) 

6, Add Triangular (4,5) 253607 6 $301,695 (4.5) 29462 5 $168,200 (6.5,3) 118359 0 $0 

(0:40:20) (0:05:33) 
(6.5,3) 

(0:41:38) 

7. Add- Linear (4,5) 208898 6 $301,695 (4.5) 25888 5 $168,200 (5,5.4) 117888 2 $67,758 

inin nonincreasing (0:30:26) (0:04:52) (0:41:27) 

8. Add- Triangular (4.5) 128741 r> $301,695 (4.5) 20925 5 Sir,8.200 (5,5,4) 67402 2 $67,758 

iiiin (0:18:59) (0:03:49) 
(5,5,4) 

(0:23:18) 

9. Traditional Model (4.3, 327486 9 $441,233 (4.3. 61054 6 $282,878 (4,4, 177333 2 $209,660 

(NM = 4 ) 2) (0:41:28) 2) (0:11:29) 4.2) (1:07:22) 

+ NMc: Number of machine types in each cell. For instance, (4,3,2) means assigning four machines to cell 1, three machines 
to cell 2, and two machines to cells 3. 
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Second, even though the max-min operator was used most often in the literature, its 

performance was surprisingly unacceptable. Not only did it require the longest time to proc

ess, clustering results (in terms of cost and of EE number) also always are worse than those of 

the other operators. For instance, more than 31 hours and 25 hours were required to com

plete cases 1 and 2 of data set I, respectively, and the costs of dealing with EE are far higher 

than those in the other cases. Although the situation is improved in data set III, results still 

are unsatisfactory. For instance, nearly 4 hours are required for using the linear nonincreasing 

membership function, and 46 minutes when a triangular membership function is used. 

Third, although the and operator often arrived at good clustering results and required 

shorter CPU time than the max-min operator did, the performance time of the former still was 

far worse than that of ehher the add or the proposed operators. Meanwhile, determining a 

proper y value is difficult. As mentioned, an experiment was conducted to determine the best 

possible values of y . Table 4 summarizes the results of using data set II. According to the 

table, the best y values for cases 3 and 4 are 0.8 and 0.2, respectively. Although they are not 

shown, the best values for data set I are 0.2 and 0.1, and for data set III are 0.3 and 0.8. The 

best value for y clearly depends on the data set. Nevertheless, when the best y values are 

used for comparison, the diid operator still performed worse in terms of CPU time than the 

add operator or the proposed operator does. 

Fourth, although applying the add operator can shorten CPU time, this operator has two 

basic weaknesses; (1) It is time consuming to obtain the objective fiinction because all mem

bership ftinctions must be summed up in the objective function and (2) clustering results are 
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Table 4. Results of Varying y Values for ihtand Operator 

Data Set II Data Set II 
(Linear Nonincreasing Membership Fn.) (Triangular Membership Function) 

Executing Cost of Executing Cost of 
Y value NMc" Pivots # of Dealing NMc Pivots #of Dealing with 

(CPU Time) EE with EE (CPU Time) EE EE 

0.1 (4,5) 415873 

(1:02:09) 

5 $161,930 (4,5) 101079 

(0:16:14) 

5 $161,930 

0.2 (4,5) 758110 

(1:53:17) 

5 $161,930 (4,5) 64639 

(0:13:02) 

5 5161,930 

0.3 (4,5) 448390 

(1:47:19) 

5 $161,930 (4,5) 131369 

(0:26:27) 

5 $161,930 

0.4 (4,5) 726365 

(1:48:46) 

5 $161,930 (4,5) 131388 

(0:26:29) 

5 $161,930 

0.5 (4,5) 337578 

(0:57:18) 

5 $161,930 (4,5) 213858 

(0:43:11) 

5 $161,930 

0.6 (4,5) 608503 

(2:05:19) 

5 $161,930 (4,5) 297232 

(0:58:33) 

5 $161,930 

0.7 (4.5) 537940 

(1:40:36) 

5 $161,930 (4,5) 367246 

(1:14:03) 

5 $161,930 

0.8 (4,5) 198635 

(0:36:55) 

5 SI 61,930 (4,5) 414789 

(1:23:37) 

5 $161,930 

0.9 (4,5) 870456 

(2:33:04) 

5 $161,930 (4,5) 436411 

(1:27:59) 

5 $161,930 

+ NMc: Number of machine types in each cell. 
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affected by constraints because all membership functions of the constraints are put in the ob

jective function. Poor clustering results can be seen from data set III of Table 3; the CF result 

of case 5 is the worst. It also is interesting that the result of case 6 of data set III is unique. 

All remaining machines or parts were assigned into a single cell, and thus the necessity of 

duplicating machines or of transferring parts was avoided. For this reason, cost was zero. 

Fifth, the proposed operator (add-min) obviously is the most efficient no matter which 

membership function is used. For example, in data set I, the worst case of using the proposed 

operator still is better than the best cases of using the other three operators. It also is true that 

the proposed operator with any membership function consistently performs better than the 

conventional formulations do, and other operators oflen require more CPU time than the 

traditional model does. 

Finally, the triangular membership function applied with any operator always resulted in 

shorter CPU times than the linear nonincreasing function did. This could be so because con

straints of the former needed a lower-boimd, and thus the possible range of solutions was nar

rowed. The triangular function may be much more compliant than the linear nonincreasing 

fijnction or the triangular function may be more appropriate for representing the fljzzy con

straints of the number of machines. 

Sensitivity Analyses 

To verify the sensitivity of these computational results, two follow-up analyses were 

performed. The first examines the impact of y value on the computational performance of the 

and operator. Table 4 summarizes results using data set II. As shown, though CPU times 
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depend upon/ values, clustering results are the same. Thus, the selection of y  value affects 

CPU time but not clustering result. 

The second analysis concerned impact of Pq value on the computational performance of 

the proposed operator. The best case was chosen from each data set (case 8), and 

thePq value ranged from 1/2 Pq to 3/2 Pq for each case. Results are summarized in Table 5. 

As can be seen, although P q  value ranged, clustering results from three different data sets 

remained the same. Moreover, CPU time for the triangular membership fijnction always was 

shorter than that of the linear nonincreasing membership function. The proposed operator 

therefore is robust, and the performance of the triangular membership function better than that 

of the linear nonincreasing membership function. 

Concluding Remarks 

This paper proposes an efficient mathematical programming formulation and correspond

ing FLP models simultaneously to form machine cells and to minimize the cost of eliminating 

EEs. Two membership functions with four operators, including a newly proposed operator, 

were applied and their results compared. Sensitivity analyses also were performed to test the 

robustness of the fuzzy models and of the proposed operator. From the computational analy

ses and sensitivity tests, a number of conclusions can be drawn. 

First, the FMP approach not only provides a better and more flexible way of representing 

the problem domain, it also leads to improved clustering performance. The CPU time re

quired for fuzzy models, however, depends on operator used. Clearly, the proposed operator 

always outperforms the traditional model whereas the performance of other operators depends 
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Table S. Impact of Different P q  Values on the Performance of the Proposed Operator 

PQ 

Data Set I 

(/>0= $166,000) 

Data Set II 

(Po= $121,000) 

Data Set III 

(Po= $209,660) 

Value 
#of 

Cells 

Executing 

Pivots 

(CPU Time) 

#of 

EE 

Cost of 

Dealing 

with EE 

#of 

Cells 

Executing 

Pivots 

(CPU Time) 

#of 

EE 

Cost of 

Dealing 

with EE 

#of 

Cells 

Executing 

Pivots 

(CPU Time) 

#of 

EE 

Cost of 

Dealing 

with EE 

~ P 0  

2 

2 

83023 

(0:13:13) 

92309 

(0:14:37) 

6 

6 

S301,695 

$301,695 

2 

2 

26921 

(0:05:23) 

23268 

(0:04:16) 

5 

5 

$168,200 

$168,200 

2 

3 

65842 

(0:25:19) 

61321 

(0:21:41) 

2 

2 

$67,758 

$67,758 

Po 

2 128741 

(0:18:59) 

6 $301,695 2 20925 

(0:03:49) 

5 $168,200 3 67402 

(0:23:18) 
2 $67,758 

2 188214 

(0:28:39) 

6 $301,695 2 20399 

(0:04:02) 

5 $168,200 3 83308 

(0:29:37) 

2 $67,758 

O P Q  

(Tradilioniil 
Model) 

3 327486 

(0:41:28) 

9 $441,233 3 61054 

(0:11:29) 

6 $282,878 4 177333 

(1:07:22) 

2 $209,660 
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on the data used. 

Second, performances (in terms of both clustering results and CPU time) of the popularly 

used max-min operator are worse than those of the other operators, no matter which member

ship function is used. Thus, a frequently used method may not necessarily be the best. 

Third, though the and operator has the best compensatory property, its performance is 

worse than that of the proposed operators. The compensatory property therefore is not nec

essarily the only major factor needing to be considered when operators are selected for the CF 

problem. 

Fourth, the proposed operator always outperformed the other three operators, regardless 

of the measure used. It also was more stable and robust than the others, regardless of mem

bership flinction orPq values. 

Finally, the triangular membership function was a more appropriate membership function 

for solving the CF problem than the linear nonincreasing type of membership function was. 

Using FLP to model CF problems is a promising approach. Although this paper has 

demonstrated through examples that FLP can be applied successftilly to solve the designated 

problem, several issues require further study. For instance, the fuzziness considered in this 

paper was limited to flizzy constraints. Several other parameters such as processing time, in

tercellular transfer cost, and subcontracting can be fuzzified further. Other objectives such as 

machine utilization and total similarity coefficient also can be considered as a fuzzy equation, 

or the problem can become a multiple fuzzy linear objective function. 
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Appendix: Generic Forms of Selected Fuzzy Operators 

Notation 

The following notation is used in the transformation of fuzzy models: 

U g  (*): the membership function of the objective function 

Ug - ^ -  ^  ,  w h e r e  p q  is the tolerance value for f(x). 

Ucii^)' the membership function of the constraints 

= , where/>/. is the tolerance value for the fuzzy constraints. 

1. Max-min operator: 

Proposed by Zadeh [39], this operator uses min to define the intersection of an aggre

gated rule, i.e., 

U D i X )  =  U G { X ) A U c , { ^ ) - - U o { X ) r ^ U c ^ X ) •  (A1) 

The aggregated membership function becomes 

U D { X )  =  M m [ U G { X ) ,  U c , (X ) ] , Vj. (A2) 

To find the maximum value of uoix), the model can be defined as 

Max A (A3) 

subject to 

^<Ug(X) (A4) 

(A5) 

0 < A < \ .  (A6) 
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2. Min-bound sum operator: 

Proposed by Luhandjula [25], this operator uses equation (A7) as the aggregation rule 

t/o = / X Ugcc, + (1 - / ) X Ua^c, • (A7) 

It then uses the min operation to represent the intersection and the bounded sum opera

tion to represent the union; aggregated membership function thus becomes 

t  
U d - Y  Us + 0- - y ) Min{\, EUs)- (A8) 

.v = 0 

The equivalent form after using the operator is; 

Max y X  +  { \ - y ) u  (A9) 

subject to 

X < U g { x )  (AlO) 

X < U c M ) , ^ j  (All) 

?/<l (A12) 

«<[/g+ZC/C;W (A13) 
/ 

0 < A < \ - r < \ .  (A14) 

3. Compensatory and operator; 

This operator uses the same aggregation rule as the min-bound-sum operator does, but it 

then uses the min operation to represent the intersection and the max operation to represent 

the union. Thus, the result of Uoi^) becomes 

I J d  =  Y  M i n J J - y ) M a x U s -  (AI5) 
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The crisp equivalent model after using this operator is: 

M a x  y X  +  { \ - y ) u  (A16) 

subject to 

A<C/GW (A17) 

Vy (A18) 

u < U g  + MYQ (A19) 

u<Uci + MYiyi (A20) 

t  
ILYs^t (A21) 

s = 0 

0<A <1; ^<1, 0,1; M  is a large number. (A22) 

4. and operator; 

To address the deficiencies of aggregation rule (A7), Werners [35] suggested modifica

tion of the membership flinction of the resulting flizzy set as 

UD=yMmUs+^^''^yn_^^f ZUs- (A23) 
s = 0 

The equivalent model after this operator is used becomes 

)/ 
i' + l) Max A + ̂  4-1 ^ ^ ^ccs 

i- = 0 

subject to 

^  +  a Q < U o { x )  ( A I S )  

A+ai<Uc,ix),y! (A26) 



www.manaraa.com

38 

A + a^<l, V5 (A27) 

l,as^O;S<\. (A28) 

5. Add operator: 

Proposed by Sommer [30], this operator first modifies the fuzzy constraints AY < ft into 

AX-Si^b and 0 . As a result, the membership function of the constraint set becomes 

U'ci - 1 ~ membership functions are sumed up in the objective functions; 

i.e., 

t 
MoxUg^ lU'c, (A29) 

/ =  1  

The equivalent LP model can be obtained as 

Min ^ ^ 1 

subject to 

A X - S i < b , y j  (A31) 

5/<P^,y/. (A32) 
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n. A FUZZY MULTIOBJECTIVE LINEAR PROGRAMMING MODEL 

FOR CELL FORMATION 

A paper prepared for submission to HE Transactions 

Chang-Chun Tsai, Chao-Hsien Chu 

Abstract 

Cellular manufacturing (CM) has attracted much attention by both researchers and 

practitioners while retaining a high level of flexibility because it can lead to reduced 

throughput time and increased productivity. The realization of CM, however, requires several 

major decisions, among which cell formation (CF) is the most critical one. Mathematical 

programming is one of the most popular approaches for modeling the CF problem, but 

situations in the real world usually cannot be defined precisely, and data regarding them are 

uncertain. Fuzzy mathematical programming is a promising algorithmic approach to dealing 

with such a problem. This paper illustrates how a fuzzy multiobjective linear programming 

(FMLP) approach can be developed to model cell formation problems with two conflicting 

objective functions - minimizing the total costs of dealing with exceptional elements (EEs) 

and maximizing group efficacy. A new similarity coefficients formula is proposed to relate 

group efficacy with similarity coefficients. 

Introduction 

To produce families of similar parts, cellular manufacturing (CM) - an application of the 

group technology (GT) philosophy - groups dissimilar machines in physical proximity. The 
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implementation of CM consists of five steps [37]: (1) form part families; (2) form machine 

cells; (3) choose tools, fixtures, and pallets; (4) select material handling equipment; and (5) 

layout the equipment. Cell formation (CF) covers the first two steps. Over the past decades, 

many analytical methods have been proposed and efficient procedures developed for solving 

the CF problems [8, 9, 32, 38], Mathematical programming (MP) is one of the most popular 

methods for CF. According to [9], the following objective functions - total costs of machine 

investment, total costs of intercell movement, total number of intercell movements, total 

similarity coefficients between parts, total distances, and total subcontracting costs - have 

been used frequently in CF modeling. Most are related to the problem of dealing with 

exceptional elements (EEs). Thus, dealing with EEs is an important objective for CF. Three 

measures often have been applied to evaluate the performance of CF: cost, group efficacy 

(GE), and similarity coefficients (SCs). The studies dealing with EEs have arrived at two 

interesting results: minimizing the cost of dealing with EEs often results in smaller number of 

cells and lower GE value, as does maximizing total SC value. Clearly, the total costs of 

dealing with EEs and GE are difficult to optimize simultaneously and the optimal cell number 

is hard to determine either in the CF problem. Therefore, how to obtain a trade-off between 

GE and the cost of dealing with EEs becomes an attractive but thorny issue. By use of an 

improved similarity-coefficient formula, it is possible to solve the controversy between SCs 

and GE so that the trade-off between cost and GE can be obtained by maximizing total SC 

and minimizing total costs. Although a number of studies [23, 26, 29, 36] have used 

multiobjective linear programming (MLP) to solve the CF problem, none has solved this 
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attractive but controversial issue. The current research is the first to propose a goal 

programming model to obtain the trade-off between the cost of dealing with EEs and GE. 

Meanwhile, past studies have been based on the unrealistic assumptions that objective 

functions and constraints of the mathematical model can be defined precisely. In practice, 

however, it is quite difficult for the decision maker to specify exact goals and constraints in 

the modeling of MLP. Furthermore, according to our previous study [35], fuzzy 

mathematical programming is more stable and efficient than traditional programming for 

modeling the single objective CP problem. In this instance, fuzzy set theory also can be 

applied to MLP. Zimmermann was the first researcher to use fuzzy multiobjective linear 

programming (FMLP) in vectors programming [42], Since then, FMLP has been applied to 

many fields - project network [10], reliability optimization [27], and the transportation 

problem [1], to name a few. None, however, has attempted to apply the FMLP to CM system 

design. 

The trade-off between minimizing the total costs of dealing with EEs and maximizing the 

total SCs of parts in all groups is unclear. In the CF problem, moreover, the number of 

machines in each cell is unknown. The objective of this research is to apply the FMLP to find 

the optimal trade-off between multiple goals under both crisp and fuzzy constraints. In the 

next section, the key issues of using FMLP will be examined. The details of formulating goal 

programming (GP) and FMLP with the new operator in [35] will be discussed in the third 

section. After illustrating and analyzing three numerical examples, conclusions will be 

discussed in the last section. 
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Fuzzy Multiobjective Linear Programming 

Fuzzy mathematical programming (FMP) is one of the simpler and more efficient 

approaches to solving multiple-objective decision making (MODM) problems under a fuzzy 

environment. Alternative methods include preemptive fuzzy goal programming, interpolated 

membership function, weighted additive modeling, a preference structure on aspiration levels, 

and nested priority [16], The problem style, model style, and solving process of FMLP 

modeling are similar to those of FLP modeling and were discussed in [35], The only 

characteristic of FMLP different from that of FLP is the implementing process. But no matter 

which FMLP approach is used, the general four-stage solving procedure depicted in Figure 1 

and outlined below can be followed; 

L Initialization: The first stage is to model the problem using the standard traditional MLP 

method. 

2. Fuzzification: This stage consists of three-steps: (1) determining the attributes to be 

fuzzified; (2) developing the FMLP formulation according to the fuzzy attributes in MLP; 

and (3) choosing the corresponding membership functions for the linguistic input values and 

the flizzy relations in FMLP. The process then can be classified into two problem styles -

vagueness and ambiguity [35, 42], For vagueness programming problems, most research 

has applied a linear nonincreasing membership function to the fuzzy objective functions [1, 

10, 27, 42] and to the constraints [25] because this membership function has the linear form 

and its linguistic can be expressed as essentially "less than" or "more than" a certain 

objective value. One paper [17] used the S shape function, and another [18] the 
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1. Initialization 
Formulates the traditional MLP model. 

Ambiguity 
nrogramming 

Vagueness 
programming 

4. Solving Process 
* Solves the LP using traditional software or 

algorithm. 

3. Operation (Conversion) 

* Selects a suitable fuzzy 

ranking method or 
possibility theory. 

* Converts FMLP to traditional 
LP. 

2. Fuzzification 
* Decides the fuz2:y attributes in MLP and formulates the fuzzy 

MLP (FMLP) model. 
* Determines the membership functions for each fuzzy attribute . 

3. Operation (Conversion) 
* Determines Z° and Z' for each objective 

function. 
(1) Based upon decision maker's 

intuition. 
(2) Z® = sup [max CX]'Z' = inf [max CX]. 

* Selects a suitable operator. 
* Converts FMLP to traditional LP. 

Figure 1: The Generic Procedure for FiVlLF Modeling 
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exponential distribution in their objective functions. Both have the nonlinear form and are 

more suitable for representing real-life cases such as cost or utility fijnctions. For 

ambiguity programming, the trapezoid membership function often has been used as the L-

R fijzzy number of parameters [24], L and R are two functions for the left side and right 

side of a membership function, respectively. 

3. Operation (Conversion): If traditional software is to be used to solve the FMLP, it must be 

converted to traditional mathematical programming. For the conversion process, selecting 

a suitable operator is a key issue in vagueness programming. On the other hand, selecting a 

suitable flizzy ranking method or possibility theory also is necessary. Also vagueness 

programming must define the intersection, or "AND," of fuzzy sets; it thus needs an 

operator to aggregate all fuzzy objective functions. 

Seven operators were listed and compared in [35] in the modeling of a single objective 

FLP. As for the FMLP, most studies [I, 10, 12, 17, 27, 39] applied the max-min operator; 

two [18, 42] used the product operator, y ; and one paper examined min-bound sum 

operators [20], Although the add-min operator is new, it has been verified as superior to 

other operators [35] and will be adapted and used in the FMLP model to compare with the 

performance of goal programming. Furthermore, if the FMLP models are to be solved, the 

aspired level of achievement, the least acceptable level of achievement, must 

be decided for each objective k .  They can be either assigned by the decision maker or 

obtained by running the LP with each single objective function. 
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To compare the fuzzy number in the constraints, some fuzzy rantcing methods have 

been proposed in [7], Two possibility theories, a feasible and p efficiency [19], also have 

been used to solve the model where the objective function has fuzzy parameters. Because 

the model to be discussed considers only fuzzy goals and fuzzy constraints, the FNILP 

model can be viewed as an example of vagueness programming. 

4. Solving process. Choose a powerful software or algorithm to solve the traditional LP and 

obtain the optimal results. In this paper, a PC version of LINDO (Linear interactive and 

discrete optimizer) package is used. 

Mathemntical Formulations 

We use the following notation to model our problems: 

Indexing Sets 

/ m a c h i n e  i n d e x ;  i ~  

j j '  part index;y,y'= 1,...,// 

k  cell index; k  =  \ ,  . . . ,  c  

s index of fuzzy constraints; .V - l,...,c' 

Parameters 

Aj the periodic cost of acquiring a machine type /' 

a  the number of machines, both parts j  and j ' tour 

b the number of machines, only part j' tours 

c the number of machines, only part j tours 

C/ the periodic capacity of machine type / 
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D j  the periodic forecasted demand for part j  

d  the number of machines not required by either part j  or j ' 

I j  incremental cost for moving a unit of part j  within two cells 

N M  the maximum number of machine types allowed in each cell 

P(. the tolerance value for the objective function of cost 

Pj. the tolerance value for the objective function of SCs 

P j j  processing time of machine type / needed to produce part J  

S j  incremental cost of subcontracting a unit of part J  for an operation 

SCjf the similarity coefficients between part j and part y ' 

S P  set of pairs (/j) such that c i j j ^ X  

UCjj the utilization capacity of machine type /' for the parts j 

The value can be calculated by the equation: ^ .j x ^ . jq  . 

Unix) membership function of aggregated results 

UgM rnembership fijnction of the specified objective function 

U s ( x )  s t h  membership function 

W c  the priority weight for the cost function 

the priority weight for the similarity function 

Zc the worst (largest) value of cost function 

z\ the worst (smallest) value of similarity coefficient function 

Zc the best (smallest) value of cost function 



www.manaraa.com

52 

Zs the best (largest) value of similarity coefficient function 

Decision variables 

dc^ the deviation variable for the cost function 

ds the deviation variable for the similarity function 

IC]f =1, if cell k is formed; 0, otherwise 

Mjjjf number of machine / dedicated to cell k  for producing part j  

Ojj]^ units of part j to be subcontracted as a result of machine type / not being available 

within cell k 

Q j  number of machine type i  needed to process it's corresponding parts in its machine cell 

R j l (  n u m b e r  o f  m a c h i n e  t y p e  /  t o  b e  d e d i c a t e d  i n  c e l l  k  

SYjj = 1, if = 1 and Y f = 1; 0, otherwise 

Ujjk - 1, ~ U Yji( = 0; 0 otherwise (i.e., machine / is an exceptional machine) 

VJJK = 1, if Jyyt ~ ^IK~ otherwise (i.e., part J is an exceptional part) 

Xj]^ = 1, if machine / is assigned to cell k\ 0, otherwise 

Yjj^ = 1, if part j is assigned to cell k\ 0, otherwise 

number of intercellular transfers required by part j as a result of machine type i not 

b e i n g  a v a i l a b l e  w i t h i n  t h e  p a r t  c e l l  k  

X minimum value of all membership functions 

The Goal Programming IVlodei 

The purpose of this model is to obtain a trade-off between the maximum total SCs of parts 

and the total costs of dealing with EEs. This model has three unique characteristics: (1) It 
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can group parts into part families and form machines into machine cells simultaneously. (2) It 

obtains the minimum total costs of dealing with EE and also considers the available capacity 

of machines and their investment cost. (3) It can obtain a reasonable relation between two 

criteria (SCs and GE) - the larger the SC value, the larger the GE value. The formulation is 

given below: 

d c  d s  
Min Wc. — +Ws.— (1) 

P c  P s  

subject to 

julairilc+h z ijzjjl^ + y, s sjoijli - dc^ - z'c •, (2) 
k i  k ( i j ) e s p  k { i j ) e s p  

z e e  s c j j ' y j k y j ' i c  +  d s - = z 2 - ,  ( 3 )  

JlXik-h , (4) 
k  =  \  

T Y j k = \ , ' ^ j ,  ( 5 )  
a r - l  

m 
I L X i k ^ N M ,  \ f k ,  (6) 

/ = 1 

X i k  -  Y j k ^ — Z i j k  +  —  O i j k  + - ^ M i j k - U i j k  =  ̂  V(/,7) e s p ,  \ f k ,  (7) 
I UCij ^ 

I (8) 
( i j )  e s p  

Q j <  z (9) 
i i j ) e s p  k  

Z Z ^Zijk^Qr Z ^C//(l-ZF/yA-), V/,and (10) 
k ( i j ) e s p ^ i  k  
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X i k , Y j k , U i j k .V i j k  = 0 o/-1; R i } ^ ^ 0 j  = general integer. (11) 

The proposed model treats at the tolerance value of every objective function as a scale; 

thus, different unit objective functions can be aggregated. The formulations of the proposed 

model are similar to those of the weighted additive model of flizzy goal programming in [17], 

which is more efficient and easier to understand. After dividing by the related scale, and 

Pg, total deviation value for total costs and SCs is minimized in Equation (1), in which 

and Pg must be calculated first. They are equal to the difference of the best goal (Z^) and 

the worst goal (Z ). Thus, Zc Zc are the feasible minimum cost and maximum cost of 

dealing with EE, respectively. Similarly, and zl are the feasible largest and smallest SC 

values. Three types of costs associated with EEs are to be minimized to approach Z® i" 

constraint (2). The first type assesses the cost of duplicating a machine. The second totals 

the costs of intercellular transfers for the EEs. The last evaluates subcontracting cost. Total 

similarity coefficients of the pairs of parts in all groups are maximized to Z® in (3). 

Constraint sets (4) and (5) ensure that each machine and part is assigned into only one cell. 

Constraint set (6) is designed to prevent assignation of more than "NM' machines to each cell. 

Constraint set (7) is the combination of equations (7a) and (7b): 

X i k - y j k  +  U i j k  -  V j j k  = 0, v(/, j )  e  . s p ,  \ f k  (7a) 

Zijk + Oijk + ̂ Mijk = DjUijk, ^(ij) V/t, 
"// U 

(7b) 
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where (7a) ensures that an EE is either an exceptional machine (a machine to be duplicated) or 

an exceptional part (a part to be transferred or subcontracted) and where (7b) further 

guarantees that the demand of exceptional part j  can be shared by the combination of 

duplicated machine / transferred within cells and subcontracted. Constraint set (8) calculates 

the number of machine type / needed to be dedicated in cell k  for producing the EE, where 

Mijjf is a real variable representing the percentage of utilization capacity of a machine type / 

dedicated to process part j  in cell k .  Constraint set (9) determines the number of machine type 

i  needed in each cell. It sums all the utilization capacities of machine type / for all relative 

parts j  {  Y .  U C j j )  not belonging to the EEs ( - j j k  )• Constraint set (10) ensures 
( i j )  ̂ s p  k  

that the numbers of intercellular transfers between machines type / do not exceed the available 

machine capacity, where —- multiplied by the right side of equation (10) is the maximum 
PiJ 

available units of machine type / if the relevant parts are to transfer. Obviously, constraint sets 

(9) and (10) are the upper-bound and the lower-bound of Oj, respectively. 

The Fuzzy Model 

The aforementioned traditional model assumes that objectives and constraints can be 

defined precisely; however, they cannot. For instance, constraint sets (2) and (3) are fijzzy 

and can affect each other. Constraint set (6) is fuzzy, too, because the MV/value is difficult to 

determine in practice. They therefore can be fuzzified and expressed as 

z za i r i l c + t  z  i  s ju i j k ' ^ z h -pc ,  (12 )  
k { i , j ) e s p  k { i j ) e s p  
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c  n  n  _  
S  S  Z  , 7 ' +  / ? , . ,  a n d  ( 1 3 )  

m  
• L X i k ^ N M ,  \ / k .  (14) 

/ = 1 

The two fuzzy inequations, (12) and (13), can be converted easily to the conventional 

formulation by applying a suitable operator after p^. and are calculated. The values of 

Pc'Ps^ and z\ are the same as those in goal programming. Different operators can 

result in different formulations and thus achieve difTerent results. Add-min operator was 

applied in this paper due to its superior performance than others for the single-objective CF 

models [35]. 

Two fuzzy cases are considered in this study. The first case is an asymmetric model, 

which only fuzzifies the two objective functions (12) and (13). The second case, called a 

symmetric model, further considers the possible impacts of the fuzzy constraint (14). 

Properties of several membership functions involving linear nonincreasing, triangular, 

trapezoidal, exponential, and S shapes were discussed in [35]. Because the triangular 

membership function is a reasonable one to represent "around" ( =) and has been shown to 

perform better than the linear nonincreasing membership function for the fuzzy constraints 

[35], the second case considers only the triangular membership function in fuzzy constraints. 

For the objective function, the linear nonincreasing function is appropriate for the minimum 

function, and the linear nondecreasing function is suitable for the maximum function. Hence, 

this paper applies the linear nonincreasing function and the linear nondecreasing function in 
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(12) and (13), respectively. The transformation formula in Zimmermann [43] will be used for 

these two membership functions. 

Case 1: An asymmetric model with an add-min operator. According to the properties of this 

operator (see Appendix), formulation after membership function aggregation yields 

UD'=UG + MinUs- (15) 
5-= 1 

To apply (15) for the FMLP, we have to select and keep only one objective as Uq 

and dispose the remaining objective functions as fuzzy constraints. In this paper, 

considering computational efficiency, the cost membership function is selected as 

Uq ' th® membership function of SCs is merged in [JS • equivalent 

transformed formulation, according to the transferred results in the Appendix, 

becomes 

MIN i:^AiRik + i: I 2 SjOijk-^Pc (16) 
k i  k i i j ) & s p  k { / J ) e s p  

subject to 

S I I S C j j ' V j k Y j ' k - ^ P s ^ z \ .  (17) 
k  =  \ j  =  \ j ' ' ^ j  

The complete formulation includes (16), (17), (4), (5), and (7) - (11). 

Case 2; A symmetric model with an add-min operator. The difference between cases 1 and 2 

is that the latter case further considers the fuzzy constraint of (14), which uses the 

triangular membership function. The transformation formula in [41] is modified to 
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prevent certain machines' being assigned to cells not yet formed. Equivalent 

formulations can be obtained as 

m  
+ (18) 

i = l 

m  
H X i k - ^  P f  -  N M  X  i C k  ^  - P r ' ' '''"d (19) 

/ = 1 

tick ^ ^ , (20) 
k = l 

m  
where the/C^ variables in equations (18) and (19) are added to ensure that Y.  Xjk  'S 

/ = 1 

equal to zero when cell k  is not yet formed. Constraint set (20) prevents clustering 

results in fewer than two cells. The complete formulation includes (16), (18) - (20), 

(4), (5), and (7)-(11). 

Please note that Equations (3) and (17) have a nonlinear term, Y jkY jk \  and cannot be 

solved by a linear programming package such as LINDO. Theoretically, we can transform the 

nonlinear term into a linear one by assuming that Yjk Y jk is equal to SY jj and 

subsequently adding the two constraints (21) and (22); 

Y j k + Y j k >  2 S Y j f  (21) 

Yjk + Yjk<\+ SYj j .  (22) 
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The Proposed Similarity Coefficients 

Total similarity and group efficacy (GE) are two popular criteria for measuring the 

performance of CF problems. The SC describes the relation between pairs of parts. In 

general, the closer the relation, the higher the SC value. Group efficacy is a quantitative 

criterion for measuring the goodness of block diagonalization of binary matrices [14]. Shafer 

and Rogers [31] surveyed and analyzed most SCs used previously. But most SC formulae 

produce a common result, i.e., the fewer the number of cells, the higher the SCs and the lower 

the GE. In other words, one cell is the best answer when maximizing total SCs. This result is 

inconsistent with the grouping principle of CF. Hence, to rectify this weakness, the current 

r e s e a r c h  r e d e f i n e s  t h e  f o l l o w i n g  f o r m u l a  f o r  S C s  b e t w e e n  p a r t s  j  a n d  j  

S C =  -  b  -  c ) j { 2 a  +  b  +  c )  f o r  a l l y  5 ^  J '  

=  0  otherwise. (23) 

According to [14], GE is equal to (total number of operations - number of EE)/ (total number 

o f  o p e r a t i o n s  +  n u m b e r  o f  v o i d s ) .  T h u s ,  E q u a t i o n  ( 2 3 )  c a n  b e  d e r i v e d  a s  f o l l o w s :  f o r  p a r t s  j  

and j', the total number of operations is "2a + h + c. " If we assume that only "a" machines 

are assigned in the diagonal blocks, then the number of EEs is ''b + c, " and the number of 

voids in the diagonal blocks is zero. Furthermore, to ensure that the range of SCs is between 

-1 and +1, we assume that the penalty weight of EEs is "two"; hence, the GE formula 

becomes [{2a + Z> + c) - 2(^ + c)]/(2c/ + /> + c + 0). 

According to equation (23), the SC value is equal to -1 if two parts are entirely 

dissimilar, e.g., {-b-c)l(b+c). The SC value is 1 {2alla) when two parts are entirely similar. 
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In general, total SC will be positive if GE value exceeds 0.6. Total SCs vv'ill be negative if GE 

value is less than 0.45. 

To assess the appropriateness of our proposed similarity coefficient, 16 data sets from the 

open literature are used for the evaluation. We adapted two different numbers of cells for 

each data set. Their performances are contrasted with six other popular similarity coefficients 

[22, 31], including 

(1) Sorenson; 2n/(2a +  b  +  c ) ,  

(2) Jaccord: ajia + b + c), 

(3) Russell and Rao (R & R); £7/(0 +  b  +  c  +  d ) ,  

(4) Phi: {ad - 6c)/+ b ) { a  +  c ) { b  + c/)(c + d ) ,  

(5) Yule: {ad - bc)l{ad + be), and 

(6) Hamann: [(a • ¥ d ) - { b  +  c ) ' \ l [ { a  +  d )  +  { h  +  c)].  

The range of SC values for the first three formulae is [0, I]; for the last three, it is [-1, 

1]. Table 1 summarizes comparison results. As shown, the proposed formula is the only one 

that can meet the principle disputed early; namely, SC value grows as GE does. The three 

coefficients with the range [0, 1] (Sorenson, Jaccord, and R & R) cannot be used because 

their similarity values are not always correlated with GE value although they are in data sets 8 

and 12, in which their GE values decreased when cell number increased. The other three 

coefficients with SCs ranging from -1 to 1 are performed better but still cannot meet the 

principle for all cases. The ratios of match for Yule, Phi, and Hamann are 13/16, 11/16, and 

5/16, respectively. So if we use the proposed SCs to present the GE value in goal 
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Table 1. Comparison Among Different Similarity Coefficients 

Data set 

IRef.] 
(Size) 

CF results 

(H of Machines 
In eacli cell) 

No. 

EE GE 
Total Similarity Data set 

IRef.] 
(Size) 

CF results 

(H of Machines 
In eacli cell) 

No. 

EE GE Proposed 
(-1, 1) 

Sorenson 
(0, 1) 

Jaccurd 
(0. 1) 

R& li 
(0. 1) 

Phi 
(-1. 1) 

Yule 
(-1, 1) 

Ilaniann 
(-1. 1) 

1. [4] 
(8 X 20) 

(2,6) 
(4,2.2) 

5 
9 

0.63 
0.85 

24,59 
42,73 

57,8 
51,87 

49,65 
46,03 

21,75 
19,0 

36.43 
47.87 

40.79 
58.78 

36 5 
47.25 

2. [11] 
(9X9) 

(4,5) 
(4,3.2) 

3 
6 

0.66 
0.74 

3,207 
4,63 

9,602 
7,317 

7,483 
6,05 

3,885 
2,997 

6,093 
5.935 

8751 
8 418 

6.224 
5.78 

3. [30] 
(9X 10) 

(5.4) 
(5,2,2) 

5 
8 

0.45 
0,48 

-2.65 
-0,39 

8,67 
6,804 

6,12 
4,97 

2,64 
2,33 

3.867 
3.586 

5.82 
5.S3 

5.775 
4.443 

4. [28] 
(lOX 12) 

(3,7) 
(2,3,5) 

0 
1 

0.56 
0,78 

1,908 
10.265 

16,454 
15,632 

13,493 
13,017 

5,2 
4,9 

11.165 
14.44 

11.87 
19.72 

13,4 
14.8 

5. [21] 
(12X 10) 

(9,3) 
(5,4.3) 

0 
5 

0.53 
0.72 

-2.827 
5.26 

10.586 
8.63 

8,38 
7,2 

3,667 
2.83 

4.416 
7.70 

2.945 
10.74 

6.0 
7.67 

6. [40] 
(12X 19) 

(9,3) 
(7,3.2) 

9 
17 

0.48 
0.52 

2.728 
10.715 

44.86 
36.857 

33,14 
27.68 

16.0 
13.67 

mmm: 
MX 

35,3 
33,53 

29.33 
24.67 

7. [13] 
(14X24) 

(5,5,4) 
(4,4,3,3) 

2 
2 

0.47 
0.67 

2.389 
20.934 

49.21 
46.48 

39.581 
37.913 

9.275 
8.707 

42.17 
43.56 

45.67 
58.62 

64.134 
54.702 

8. [3] 
(15X 10) 

(5,5,5) 
(5,5,3,2) 

0 
7 

0,92 
0,83 

9.39 
6,83 

10.69,; 
7.41 

9.8.:::;;:: 
7,0 

•;:;3;27;.: 
2.3:5-

10.24 
7.218 

11.81 
7.935 

10.53 
7.33 

9, [33] 
(16X30) 

(8.6.2) 
(6,4,4,2) 

16 
19 

0,46 
0,67 

-49,85 
20,396 

68,57 
61,2 

53,11 
48,61 

18.06 
16.31 

38.7 
51.5 

16.219 
70.3 

83.75 
64.75 

10. [2] 
(16X43) 

(7,7.2) 
(7,4.3.2) 

17 
21 

0.38 
0,42 

-72,75 
-61,07 

136,12 
132,46 

100,02 
97,16 

27.31 
26.69 

101.93:: 
; loim:; 

102.83 
110.98 

198.63 
193,13 

11. [2] 
(20 X 35) 

(10.5,5) 
(5,5.5,5) 

1 
2 

0,53 
0,76 

2,647 
63,96 

101,82 
100,97 

86,19 
85,72 

20.75 
20.55 

83.411 
97.52 

63.13 
126.5 

127,4 
112,9 

12. [5] 
(24 X 40) 

(5,4.4,4,3.2,2) 
(5,4,4,3,2,2,2, 

2) 

0 
9 

0,93 
0,88 

83,75 
78,8 

: 92.88 ;:: ; : :88.08:::: 
«2.58 

: 11:29;: 
io;38i;;: 

92.63 
86.32 

99.78 
91.87 

9S.42 
91 25 

13. [5] 
(24 X 40) 

(6,5,3,3,3,2) 
(5,4.4,4,3.2,2) 

9 
10 

0,64 
0,83 

40,74 
65,004 

86,37 
83,5 

76.37 
74.5 

11.375 
11.04 

79.751 
81.93 

77.398 
97.3 

105,75 
91.99 

14. [15] 
(30X41) 

(11,9.8,2) 
(9,9.5,2,5) 

8 
9 

0,31 
0,39 

-118,88 
-72,52 

62,56 
58,74 

44.32 
41.78 

7.67 
7.4 

46.58 
47.157 

-13.45 
25.56 

173.4 
136.13 

15. [34] 
(30 X 50) 

(13,7.6,4) 
(11,7,6,4,2) 

0 
10 

0,36 
0,39 

-98,34 
-70,2 

105,83 
97,4 

74,82 
69,34 

11.03 
9.97 

.::S3.07;::::: 
78:99^ 

99.132 
106.57 

221.93 
198.87 

16. [6] 

(40X100) 

(8,6,5,5,4 
4,3,3.2) 

(6,5.5,5,4,4, 
3,3,3,2) 

35 

36 

0,76 

0,84 

317.52 

350,1 1 

437,28 

435,55 

385,94 

384,93 

48.53 

48.38 

9488.3 

9543.5 

488.33 

514.12 

504.3 

481.8 

No. of 
Match 

16 2 ® 2 ® 2 ® 11 * 13 * 5® 

@ Cases in shadow indicate that they match the principle, 

* Cases in shadow indicate that they do not match the principle. 
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programming and FMLP models, a trade-off between total costs and GE would be 

achievable. The optimal number of cells also would be obtainable automatically. 

Numerical Illustration 

To illustrate the performance of the proposed fuzzy CF models, this paper considers 

three data sets from [30, 11, 13]. These sets were examined in [35] for fuzzy CF problems 

with single-objective. The complexity of data sets I, II, and III in terms of percentage of EEs, 

the number ofEEs divided by the total number of elements, is 28.6%, 18.8%, and 3.3%, 

respectively. It is assumed that the desired maximum number of cells "C" for the data set is 

"2" or "3" and that the maximum number of machines "NM" allowed in each cell is "4." Table 

2 summarizes the results from seven different cases, where cases 1 and 2 have been discussed 

in the previous section and where cases 3, 4, and 5 are based on the goal programming model. 

The ratio among the weight of cost function and the similarity function in cases 3, 4, and 5 are 

0.5, 2, and 1, respectively. Case 6 is a single objective formulation designed to maximize the 

total SCs of parts. As such, it considers only constraint (5) in goal programming and uses (3) 

as the objective function. Similarly, the objective of case 7 is to minimize the total costs of 

dealing with EEs; thus, constraints (1) and (3) should be deleted from the goal programming 

model and considers (2) as the objective function. 

These results were obtained by ninning the LINDO (Linear Interactive and Discrete 

Optimizer) package in an IBM compatible 486 DX2 66MHZ computer. Computational 

performances are measured in terms of GEs, SCs, number of EEs, executing times, and total 

costs of dealing with EEs. Several observations can be made based on the results. 
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Table 2: Summary of Results for Traditional and Fuzzy Models 

Data set 

(Size) 

Cases 

Costs of 

dealing 

with EE 
SCs^ GE'^ 

E.vecuting 

CPU time 

(h: m: s) 

#of 

EE {Machine/Parts} 

I 

(9X10) 

P c  
(226,609) 

P s  
(5.87) 

1, FMLP 
(Asymmctric) 

$325,892 -2.66 0.48 (1:25:38) 5 Cl:{ 1,2,3,4,5/1,2,3,4,6} 

C2:{6,7.8.9/5,7,8,9,10} 

I 

(9X10) 

P c  
(226,609) 

P s  
(5.87) 

2. FMLP 
(Syminetric) 

$325,892 -2.66 0.48 (1:26:09) 5 Same as case 1. 

I 

(9X10) 

P c  
(226,609) 

P s  
(5.87) 

3. GP 

(Ws=2Wc) $436,447 -0.39 0.49 (68:57:30) 8 
C1:{1,2,3,4,5/1,2,3,4,6} 

C2:{7,8/5,8} 

C3:(6,9/7,9,10} I 

(9X10) 

P c  
(226,609) 

P s  
(5.87) 

4. GP 
(Ws=Wc) 

$325,892 -2.66 0.48 (68:54:51) 5 Same as case 1. 

I 

(9X10) 

P c  
(226,609) 

P s  
(5.87) 

5. GP 

CWs=Wc/2) 

$325,892 -2.66 0.48 (67:06:19) 5 Same as case 1. 

I 

(9X10) 

P c  
(226,609) 

P s  
(5.87) 

6. LP 

(Max SCs) $526,834 0.41 0.54 (1:05:35) 9 

C1:{1,2,3,5/1,3,4,6} 

C2:{4,7,9/5,7,8,10} 

C3;{6,8/2,9} 

I 

(9X10) 

P c  
(226,609) 

P s  
(5.87) 

7. LP 

(Min Cost) $300,125 -5.46 0,43 (0:18:10) 5 

Cl:{2,3,4,5,7,8/1,2,4,5, 

6,8} 

C2:{1,6,9/3,7,9,10} 

II 

(9X9) 

P c  
(143,527) 

P s  
(3.26) 

1. FMLP 
(Asyinmctric) 

$168,200 3.21 0.66 (0:13:42) -) 
J Cl:{ 1,2,6,9/1,2,6,9} 

C2:{3,4,5,7,8/3,4,5,7,8} 

II 

(9X9) 

P c  
(143,527) 

P s  
(3.26) 

2. FMLP 
(Svinnielric) 

$168,200 3.21 0.66 (0:13:46) 3 Same as case 1. 

II 

(9X9) 

P c  
(143,527) 

P s  
(3.26) 

3. GP 
(Ws=2Wc) 

$168,200 3.21 0.66 (0:41:48) 3 Same as case 1. 
II 

(9X9) 

P c  
(143,527) 

P s  
(3.26) 

4. GP 
(Ws=Wc) 

$168,200 3.21 0.66 (0:37:24) 3 Same as case 1. 

II 

(9X9) 

P c  
(143,527) 

P s  
(3.26) 

5. GP 

CWs=Wc/2) 

$168,200 3.21 0.66 (0:52:48) 3 Same as case 1. 

II 

(9X9) 

P c  
(143,527) 

P s  
(3.26) 

6. LP 

(Max SCs) $289,160 4.63 0.74 (0:11:26) 6 

C1:{1,5/1,5} 

C2:{2,6,9/2,6,9} 

C3:{3,4,7,8/3,4,7,8} 

II 

(9X9) 

P c  
(143,527) 

P s  
(3.26) 

7. LP 

(Min Cost) $145,533 1.37 0.60 (0:02:45) 3 

Cl-.{1,3,4,5,7,8/1,3,4,5, 

7,8} 

C2:{2,6,9/2,6,9} 
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Table 2: (Continued) 

Data set Cases 

Costs of 

dealing 

with EE 
SCs"" GE 

Executing 

CPU time 

(h: m: s) 

#of 

EE {Machine/Parts} 

1, FMLP 
(Asymmetric) 

$67,758 2.38 0.527 (18: 45:34) 2 

Cl:{ 1,4,5,7,13/1,2,6,7,8, 

17,18,19,20,23} 

C2:{2,3,10,11/3,4,21,24} 

C3:{6,8,9,12,14/5,9,10, 

11,12,13,14,15, 

16,22} 

2. FMLP 
(Symmetric) $67,758 2.38 0.527 (19: 27:39) 2 Same as case 1. 

III 

3. GP 
(Ws=2Wc) 

- - - - - -

(14 X 24) 4. GP 
(Ws=Wc) 

- - - - - -

Pc 
(209,660) 

5. GP 
(Ws=Wc/2) 

- - - - - -

Ps 
(18.52) 

6. LP 

(Max SCs) $209,660 20.9 0.67 (2:23:00) 2 

C1:{1,12,13/6,7,8,18} 

C2:{2,3,10,11/3,4,21,24} 

C3:{4,5.7/1.2,17,9, 

20.23} 

C4:{6,8,9,14/5,9,10, 

11.12,13,14,15, 

16.22} 

7. LP 

(Min Cost) 0 2.38 0.526 (0:15:22) 0 

Cl:{ 1,4,5,7,12,13/1,2,6, 

7,8,17,18,19,20,23} 

C2:{2,3,10,11/3,4,21,24} 

C3:{6,8,9,14/5,9,10,11, 

12,13,14,15.16,22} 

Note: 

+ SCs: Similarity coefficients. 

& GE: Group efficacy. 

- The executing CPU time is more than four days. 
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First, When SC and GE values are compared in all cases, they are correlated significantly. 

This result satisfies the principle mentioned earlier - as SC value grows, so does GE 

value. For instance. Table 2 shows that in all data sets no SC decreases as GE grows. The 

worse situation occurs in data set III, where GE values of cases 1 and 2 are larger than the 

value of case 7 (0.527 vs. 0.526) whereas their SC values are the same. This occurs because 

cases 1 and 2 in data set III have the same number of part families and the same parts even 

though the machines in machine cells are different. The clustering result, however, also 

obtains a trade-off value between cost and GE. This fact proves that Equation (26) is a 

feasible formation to be applied in the objective function to optimize GE evaluation. 

Second, SC and GE values and the total costs of dealing with EEs in cases 6 and 7 are, 

respectively, the upper bound and the lower bound of these in all cases. Based on the results 

of these two cases, Pc and Ps can be calculated. As can be seen from Table 2, all costs and 

GE values of cases 1 - 5 are between those of cases 6 and 7. 

Third, only in the higher complex data set will changing Wsl^Vc value obtain different 

clustering results. For instance, in data set 1, which has the greatest complexity of all sets, the 

clustering results of case 3 which have the highest SC and GE values and costs as well as the 

related WslWc value. The GE and SC values of case 3 are closer to those of case 7 than to 

those of cases 4 and 5 because the JVs/fVc value is the highest in case 3. In data sets II and 

III, which are less complex, the clustering results of all three cases are no different, because 

few of their clustering results can satisfy the trade-off condition. 
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Fourth, in terms of clustering results, the proposed FMLP is equivalent to goal 

programming, when fVc is equal to PVs (cases that f'Fc is not equal to f'Fs will be discussed in 

the section of sensitivity analysis). But in terms of computational efficiency, FMLP models 

outperform goal programming, as can be seen from Table 2, in data sets I and II. The 

clustering results of cases 1 and 2 are the same as those of cases 4. Execution time of FMLP 

in data set I are much shorter than that of goal programming (85.5 minutes and 4134.8 

minutes, respectively). In data set III, the execution time of goal programming is more than 

four days that is much longer than that of FMLP (18.5 hours). 

Fifth, in terms of computational efficiency, the asymmetric models performed better than 

the symmetric model. Table 2 shows that all clustering results of these two models are the 

same, but the execution time of the asymmetric model (case 1) in all data sets is shorter than 

that of the symmetric model (case 2). This result will be further confirmed in the next section. 

Furthermore, from a theoretical point of view, the asymmetric model is much easier to 

implement than the symmetric model because the former does not involve the fuzzy 

constraints of the MM value. Thus, the asymmetric model may be a better choice. 

Finally, even though FMLP can be used to model the CF problem in a fuzzy environment 

and can improve computational performance, it still requires much time to solve larger data 

sets. For instance, data set III has 14 machines and 24 parts that can be assigned to three or 

four cells; thus, the model requires 2600 constraints and 1570 variables, which makes 

execution time uneconomical. Such complexity is, however, a common weakness of MP. 
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Sensitivity Analysis 

To examine the impacts of Pc/Ps values on clustering results, a senshivity analysis was 

conducted. Table 3 summarizes the results with different p^ values and models. For the 

convenience of implementation, we fixed the p^ value and changed the P^ value only. A 

number of observations can be drawn. 

First, value will affect execution time significantly. Each data set affects 

execution time uniquely. For instance, in data set I, a complex set, a higher P^Ps^^^^^ will 

obtain a greater number of cells. Thus, computation time will increase. In other words, the 

higher the P^^fp^v?i\\iQ, the longer the execution time. For data set II, execution time is 

longer when P^/Ps is lower. 

Second, different Pq!Ps values will obtain different clustering results for the higher 

complex data set. For instance, cases 1 and 4 in data set I perform better in term of GE but 

worse in terms of cost and EE numbers. However, clustering results for all cases in data sets 

II and III are entirely the same. In other words, for the lower complex data set, value 

has no major impact. 

Finally, there is a correlation between varying the p^ value and the value. 

Both have the same effect on overall performance, such as GE, SC, EE numbers, and cost. 

Furthermore, clustering results obtained by changing PdPs^^e fuzzy asymmetric model 

are similar to those obtained by changing W ^/Wc goal programming model, for neither 
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Table 3: Summary of Results for Fuzzy Models with DifTerent Ps Values 

Data 
set 

P e l f  s  Model 

style 

Cost of 

dealing 

witii EE 

SCs GE 

Executing 
time 

(h: ni:s) 

# of 
EE {Machinc/Parts} 

1. 2 Asymmetric 436,447 -0.39 0.49 1:27:30 8 

Cl:{ 1,2,3,4,5/1,2,3,4,6} 

C2:{7,8/5,8} 

C3:(6,9/7,9,10} 

1 2. 1 Asymmetric 325,892 -2,66 0.48 1:25:38 5 

Cl:{ 1,2,3,4,5/1,2,3,4,6} 

C2:{6,7,8,9/5,7,8,9,10} 

Pc 
(226609) 3. 

1 

2 
Asymmetric 325,892 -2.66 0.48 1:02:15 5 Same as case 2. 

Ps 
(5.87) 4. 2 Symmetric 469,430 -0.39 0.50 1:38:19 9 

Cl:{ 1,2,3/1,2,3} 

C2:{4,5,7,8/4,5,6,8} 

C3:(6,9/7,9.10} 

5. 1 Symmetric 325,892 -2.66 0.48 1:26:09 5 Same as case 2. 

6. 
1 

2 
Symmetric 325,892 -2.66 0.48 1:28:08 5 Same as case 2. 

1. 2 Asymmetric 168,200 3.21 0.66 0:10:12 3 

Cl:{ 1,2,6,9/1,2,6,9} 

C2:{3,4,5,7,8/3,4,5,7,8} 

II 2. 1 Asymmetric 168,200 3.21 0.66 0:13:42 3 Same as case I 

Pc 
(143527) 3. 

1 

2 
Asymmetric 168,200 3.21 0.66 0:26:59 3 Same as case 1 

Ps 
(3.26) 4. 2 Symmetric 168,200 3.21 0,66 0:17:11 3 Same as case 1 

5. 1 Syirmietric 168,200 3.21 0.66 0:13,46 3 Same as case 1 

6. 
1 

2 
Symmetric 168,200 3.21 0.66 0:36:59 3 Same as case 1 
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Data 
set 

PdPs Model 
style 

Cost of 
dealing 
>Yit!i EE 

SCs GE 

Executing 
time 

#of. 
EE {Machine/Pat^s} 

1. 2 Asymmetric 67.758 2,38 0.53 22: 06:37 2 

Cl:{ 1,4,5,7,13/1,2,6,7, 

8,17,18.19,20,23} 

C2:{2,3,10,11/3,4, 

21,24} 

C3:{6,8,9,12,14/5,9,10, 

11,12,13,14,15, 

16,22} 

lU 2. 1 Asymmetric 67,758 2,38 0.53 18: 45:34 2 Same as case 1 

Pc 
(209660) 

1 
3. -

2 
Asynunetric 67,758 2,38 0.53 19: 59:21 2 Same as case I 

Ps 
(18.52) 4. 2 Symmetric 67,758 2,38 0,53 23: 35:14 2 Same as case 1 

5. 1 Symmetric 67.758 2.38 0.53 19: 27:39 2 Same as case 1 

1 
6. -

2 
Symmetric 67,758 2.38 0.53 21: 05:43 2 Same as case 1 
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considers fuzziness in the constraints. Clustering results among cases 1, 2, and 3 in Table 3 

(FMLP) are the same as those among cases 3, 4, and 5 in Table 2 (goal programming). 

Concluding Remarks 

A goal programming formulation and corresponding FMLP models were proposed to 

solve the CF problems with two conflicting objectives - minimizing the total costs of dealing 

with the EEs, and maximizing the SCs of parts. A new part SC formula also was proposed to 

optimize GE by way of maximizing total SC. Symmetric and asymmetric models with the 

add-min operator were investigated through FMLP, 

Three conclusions can be drawn from the numerical illustrations. First, the FMLP 

approach not only can obtain the same clustering results but also is more efficient 

computationally than the goal programming models are. Second, the effect of changing 

PcIPs FMLP is similar to that of changing the WslWc ratio in goal programming 

models. Generally, if the data set was complicated, that is, if there was a great percentage of 

EEs, the larger the PcfPs O"" value, the better the GE value and the worse the cost 

performance. If the EE percentage is relatively small, clustering results would be the same, 

however. Third, since the asymmetric model always could obtain the same clustering results 

as the symmetric model could in the lower complex data set or slightly different clustering 

results in the complex data set, the asymmetric model is worthy of consideration because of its 

computational efficiency. 

Using FMLP to trade off conflicting objectives in CF problems is a better approach than 

goal programming method to designing workcells. However, like other mathematical 
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programming, the executing efficiency of FMLP deteriorates when the problem size grows. 

Hence, developing an efficient heuristic algorithm based on the FMLP model to solve larger 

problems remain an interesting topic for future studies. 

Appendix: Generic Form of the Add-min Operator 

The add-min operator is an improved operator remedying the weakness of add and min 

operators. According to [35], add-min applies the min operator for fuzzy constraints and 

combines these with the fiizzy objective function by using the add operator. Thus, the 

aggregated membership function becomes 

UD=^-HUG + MmUs)- (Al) 
5=1 

The range o^ UD The model after aggregation is linear, and the compensatory 

property is better than the max-min and add operators. For a standard FLP model, 

mJn  f { x )  =  C X  (A2) 

subject to 

A X < b .  (A3) 

The equivalent transformed formulation after the add-min operator is applied becomes 

MAXUG + ̂  (A4) 

subject to 

CX -  7^ 
U G - ^  a n d  ( A 5 )  

Po 
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(A6) 

If constraint (A5) is inserted into (A4), the fuzzy objective function becomes (A7) and the 

fuzzy constraint (A8). 
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III. OPTIMIZING THE PROBLEM OF DEALING WITH EXCEPTIONAL 

ELEMENTS IN CELL FORMATION: 

A HEURISTIC GENETIC ALGORITHM APPROACH 

A paper prepared for submission to Decision Science 

Chang-Chun Tsai, Chao-Hsien Chu, and Thomas Arnold Barta 

ABSTRACT 

Genetic algorithms (OA) have been recognized as an efficient search procedure for 

solving difficult combinatorial problems. The performance of OA, however, depends quality 

on suitably selected parameters. Improperly selected parameters can lead to inconclusive 

results and to increased computational time. 

This paper demonstrates how GA can be used to solve a cell formation (CF) problem so 

as to minimize the total costs of dealing with exceptional elements (EEs). New heuristic 

crossover and mutation operators are proposed to enhance computational effectiveness, and a 

heuristic algorithm for computing total costs is developed to evaluate the fitness values of 

chromosomes. The proposed heuristic GA clearly outperforms both a mathematical 

programming (MP) model and a traditional GA, in terms of clustering results, computational 

time, and ease of use. 
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INTRODUCTION 

Cellular manufacturing (CM), an application of the group technology (GT) philosophy, 

groups dissimilar machines in physical proximity to produce families of similar parts. This 

philosophy has affected the way that people think about and perform their jobs [42], Cell 

formation, the first step and the key task of designing CM, concerns the process of grouping 

parts with similar design features or processing requirements into part families and grouping 

machines into machine cells. Many analytical methods have been proposed or developed for 

solving CF problems [9] [13] [40] [49], Mathematical programming, one of the most popular 

methods, not only can guarantee an optimal solution but also can serve as a basis on which to 

develop heuristic methods. When problems increase in size, however, the solving efficiency of 

MP deteriorates. A state-of-the-art survey on the use of MP in CF can be found in [13]. 

To remedy the aforementioned weakness, efficient heuristic algorithms have been 

developed. The GA, which imitates natural selection and biological evolutionary process, is 

one of these search algorithms. Because the GA has a number of properties that other search 

procedures do not have [24], it can be an attractive algorithm with which to solve complicated 

combinatorial problems. These properties include (a) many feasible points considered and 

evaluated simultaneously in search space; (b) strings of characters representing the parameter 

set that are dealt with directly, not with the parameters themselves; and (c) probabilistic 

theory, not random search, used to direct the search. Thus, a GA search has the capability to 

process points in parallel, which decreases the probability of its being trapped in a local 

minimum, and a high-quality solution can be reached. 
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Although GA has been applied successfully to a variety of disciplines, we have been able 

to find only one paper [47] that has applied the GA to solve a CF problem. But there were 

two weaknesses in that GA study: (1) results did not compare with those of the mathematical 

programming approach because the mathematical model was not well developed for running 

in any mathematical software package, and (2) as with the traditional GA, improper 

parameters could cause poor computational performance. To overcome these weaknesses 

and to retain the advantages of the novel approach, heuristic crossover and heuristic mutation 

operators were developed based on the special characteristics of the CF problem. 

A comprehensive CF problem that can simultaneously form manufacturing cells and 

minimize the total cost of dealing with EEs is studied. An EE is produced when either certain 

parts must be processed through more than one machine cell or certain machines are required 

by more than one part family. An EE increases the tangible and the intangible costs of 

developing manufacturing cells. The heuristic GA is based on the mathematical programming 

model proposed in [45], Seventeen data sets from the open literature will be used, and their 

performance will be compared with that of the MP and that of the traditional GA. 

OVERVIEW OF THE GENETIC ALGORITHM 

The GA is one of the best-known structured random search methods. As stressed by 

Holland [22], one of its important aspects is that even in a large and complicated search space, 

given certain conditions on the problem domain, the GA will converge on solutions globally 

optimal or nearly so. The GA has been used in a wide variety of research fields including 
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design, scheduling, configuration, financial portfolio management, adaptive control systems, 

and noisy data interpretation [18] [21], The implementing procedure for GA can be seen in 

[14], and the key components covered in the procedure follow [18], 

Chromosomal Representation 

Defining variables is the major step in implementing MP. Similarly, defining and 

representing variables is a key step in implementing GA. Here, two decisions are involved: 

(1) The style and the physical interpretation of representation. Different problems have 

different ways of representation and interpretation, and these differences will affect 

chromosome size. For example, in the layout problem, the string represents the layout 

structure. In the CF problem, each bit may represent the cell number for related machines and 

parts. (2) The coding scheme for each bit position. Two schemes are used; (a) binary (0 and 

1) and (b) integer (0 to 9). The first is the traditional coding method and can be found in 

problems of fijzzy control [16] [17] [20] [24] [25] [34], optimal knapsack packing [15], and 

neural networks [1] [31], The second is a hybrid string representation up until now found 

primarily in problems of facility layout [5] [44], traveling salesman [23] [33], scheduling [2] 

[29], CF [47], and mixed discrete nonlinear optimization [30]. This latest scheme decreases 

the length of the chromosome, thus simplifying string processing and improving computational 

efficiency dramatically. 

Generation of Initial Popuhition 

Initial population normally is generated randomly. For feasible solutions to be obtained, 

however, each chromosome must satisfy problem constraints. Two methods are used to 
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handle these constraints: (1) The variable restriction method, which chooses only the 

populations satisfying the feasible region of constraints; and (2) the penalty function method, 

which allows populations to violate constraints but imposes a penalty when they do. These 

violated chromosomes therefore have a higher probability of rejection as a result of their 

penalized fitness. An unsuitably defined penalty function may produce an infeasible final 

solution or may make the optimal solution difficult to obtain. 

Selection of Fitness Function 

A fitness fiinction is needed so that better solutions can be scrutinized. The objective 

function (to maximize or to minimize) of the MP model can be used directly for such a 

purpose. 

Genetic Operators 

Operators, which process the evolution of populations from generation to generation, are 

the key aspect of GA. Three basic operators - reproduction, crossover, and mutation - and 

their variations are discussed in most GA literature [18]. 

(1) Reproduction. The reproduction operator generates a mating pool of populations 

selected from the current existing chromosomes with respect to the probability 

distribution of fitness values. Several methods have been used for reproduction. Roulette 

wheel selection [17] [18] is the easiest and most popular method and normally achieves 

effective reproductions. With this approach, the better-fitted populations are assigned 

larger slots on the wheels and thus have greater probabilities of being selected for 

reproduction in the next generation than other populations do. The second approach is 
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tournament selection [24], whereby pairs of populations are compared with each other on 

a head-to-head basis to determine survival in the next generation. The larger evaluation 

value in each pair is selected for the maximum problem; the smaller value, for the 

minimum problem. Another alternative is called "steady-state without duplicates" [30]. 

Under this strategy, only a certain number of populations instead of all populations, are 

replaced each time. 

(2) Crossover. After the better-fitted populations are produced, the crossover operator is 

used. Each pair of chromosomes is exchanged according to a special rule, and new 

strings are produced. Three kinds of crossover operators can be found: (a) The basic 

crossover operator includes single-point crossover and two-point crossover [47], The 

former first generates randomly a number, that indicates the position of the crossing 

point for each pair of populations; then the offspring combines the section of one 

parent with the post-^ section of another. The latter generates randomly two numbers, X 

and that indicate the positions of the crossing point for each pair of populations. The 

offspring exchange between each other's section, (b) Permutation crossover 

operators. Four methods have been proposed so far [5], The first is partially matched 

crossover (PMX), which is based on the aforementioned two-point method. Because the 

results of two-point crossover sometimes are illegal, the improved step is to replace these 

repeated genes with related genes from the exchanging section (between the X-'̂  

section). The second method is Order Crossover (OX), which also generates randomly 

two cut points and copies the genes bound by the cut points to the offspring. The method 
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then uses a sliding procedure to fill the remaining places with numbers not occurring in 

the copied section. The third method is Cycle Crossover (CX), which does not need to 

select cut points. Each gene of the offspring comes from the corresponding position of 

either parent. An initial value is selected first from parent 1, and the related position's 

value in parent 2 is checked. Therefore, the position of this value is found in parent 1, 

and the related position's value in parent 2 is checked. This procedure stops when the 

initial value is met again. A cycle is formed by the positions of these elements, and the 

use of these operators can be found in the layout, traveling salesman, and sequencing 

problems. The last method is proposed in [35] to solve the sequencing problem. It was 

modified from the aforementioned one-point method. This method also replaces repeated 

genes with related genes from the exchanging section (the pre-^ section), (c) Heuristic 

operator. A heuristic crossover operator was developed in [23] to solve the traveling 

salesman problem. It uses a heuristic to combine good subpaths from both parents. 

Because it has a clear direction by which to find the better generations, it is more efficient 

than random crossover. 

(3) Mutation. Mutation involves the change of a single gene value with a mutation 

probability when new chromosomes are formed. The new value is a randomly generated 

number other than itself 

Determination of System Parameters 

Certain parameters must be determined in the initialization of every GA problem. 

Population size, for example, is required for defining the variable. Maximum number of 
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generations and the probabilities of crossover and of mutation also are needed for the 

evolution process. These values are very sensitive to the performance of implementing GA. 

It is difficult to determine appropriate parameter values. Guidelines for selecting parameters 

can be found in [20], But extensive experimentation with tedious trial and error is suggested 

for the selection process, because parameters depend greatly on problem characteristics. 

MATHEMATICAL MODEL OF CELL FORMATION 

Finding the best combination of machine cells and part families to reach a specific goal 

(objective) in a context of limited of resources (constraints) is the spirit of CF. Several 

popular objective functions can be found in [13]; most functions frequently used in CF 

modeling have been related to EE. For example, the top two are total costs of machine 

investment and total costs of intercell movement. Hence, for practical purposes, this paper 

applies GA to a more comprehensive CF model, which was adapted from [38] and used in 

[45], The proposed model not only can group part families and machines cells simultaneously 

so as to minimize the total cost of dealing with EEs, but also considers the available capacity 

of machines; thus, the needed number of machines can be determined and minimized. For a 

detailed mathematical programming model, please see the Appendix and refer to [45], 

THE PROPOSED GENETIC ALGORITHM HEURISTIC 

One major weakness of the optimization approach is that computational efficiency 

deteriorates as problem size increases. In this section, the GA heuristic developed to resolve 
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this dimensional problem is discussed. Its performance will be compared with that of the 

optimization model and that of the traditional GA approach. 

The traditional GA uses three operators; reproduction, crossover, and mutation. 

Random selection of the processing objects is used in the last two operators. Thus, results 

depend on crossover probability, mutation probability, and the seed for generating random 

numbers. When inappropriate values are assigned these parameters results may be 

inconclusive [37]. The proposed GA heuristic uses the traditional reproduction operator but 

modifies the crossover operator and develops a new heuristic mutation operator to decrease 

the dependence of parameters and to increase computational efficiency. Table 1 summarizes 

the differences between the proposed GA heuristic and the traditional GA. A complete 

implementing procedure for the proposed heuristic GA appears in Figure 1. Key components 

and technical details follow: 

Chromosomal Representation 

The chromosome consists of (/» ' ii) genes, in which the first ni genes correspond to 

machines and the next n genes correspond to parts. For example, if seven machines and ten 

parts are to be grouped into three cells, then chromosome can be represented as (1 12 3 12 3 

11 3 2 3 2 1 1 3 2 1), where all strings are integers. As such, this chromosome indicates that 

cell 1 consists of machines 1, 2, and 5 and of parts 1, 6, 7, and 10; cell 2 has machines 3 and 6, 

and parts 3, 5, and 9; remaining machines and parts belong to cell 3. 
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Table 1: Differences between the Traditional GA and the Proposed GA Heuristic 

Key Components Tiic Traditional GA The Proposed GA Hcuristic 

• Chromosomal 

Representation 

• Each gene represents the ccll number to 

which maciiincs and parts belong. 

• Same as the traditional GA. 

• Generation of Initial 

Populations 

• Variable restriction method. (MU needs 

to be given) 

• Same as the traditional GA, e.xcept 

the .\'M is not required. 

• Selection of Fitness 

Function 

• Uses the objective function of MP. • Same as the traditional GA. 

• Reproduction 

Operator 

« Roulette wheel selection method. 

• Keeps four best populations in the next 

generation. 

• Same as the traditional GA. 

• Crossover Operator • Uses a single-point crosso\cr operator. 

The crossover range includes all genes. 

• Uses a single-point crossover 

operator. The crossover range is 

limited to part genes. 

• Dc\elops a heuristic recombination 

method based on the SCs between 

parts, for part genes. 

• Mutation Operator • Mutates genes' values randomly, 

according to the probability of 

mutation. 

• Develops a heuristic method to 

determine the gene value for each 

machine, based on crossover results 

and then reconsiders the gene value 

of each part. 

• System Parameters • Probability of crossover. 

• Probability of mutation. 

• Seed for random number generation. 

• Population si/.e. 

• Number of generations. 

• Seed. (1234 can solve all data sets) 

• Population size < 100, 

• Number of generations < 5. 
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1. Defines the string representation. 
2. Randomly Generates initial populations that meet 

problem constraints. 
3. Calculates the similarity coefficients between parts. 

1. Uses the roulette wheel method to select new 
generations. 

2. Keeps four best populations in the next generation. 

1. Phase 1: Applys single-point crossover method to 
obtain new generations. 

2. Phase 2: 
(a) Randomly selects children for heuristic process. 
(b)Randomly generates a threshold similarity value. 
(c) Randomly selects a seed part, merge other parts 

having the similarity coefficient larger than the 
threshold similarity value. 

1. Mutation 1; Computes total numbers of parts ( T P )  

needed to be processed by each machine in each cell. 
Assigns the cell number having the largest TP value 
as the gene value for each machine. 

2. Mutation 2; Computes total numbers of machines 
(ZM) used by each part in each cell. Assigns the cell 
number having the largest TM value as the gene 
value for each part. 

Figure 1: Implementation Procedure of the Proposed GA Heuristic 

Initialization 

Reproduction 

Hei 
Cro 

uristic 
ssover 

1 r 
T 

Heuristic 
Mutation 
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Generation of Initial Population 

This study uses a variable restriction method to generate initial population. Initialization 

population is generated randomly to satisfy the requirement of problem constraints. Two 

constraints are considered: (1) the total number of machines in each cell must be less than or 

equal to NM, and (2) the number of machines and of parts in each cell must be greater than 

one. 

Selection of Fitness Function 

This study uses the objective function, minimum total costs, of the mathematical 

programming model as the fitness function for evaluation. The following rules are deduced 

and applied to compute the optimal costs of dealing with EEs for each chromosome: 

(1) Rule 1. If more than one exceptional part that must be processed by the same machine, /, 

are in the same cell, then the following procedure is followed: 

® Compute the total number of machine / needed to process EEs in cell k. 

• Sort the cost ratios (cost of moving a unit of part j! processing time of machine / needed to 

process part j) of all EEs in ascending order. 

® If the total number of machine i needed to process EEs {TClvf) is greater than one, then 

duplicate machine / to cell k for the tamcate value of TCM, and assign the remaining 

units to the EEs with the highest cost ratios. 

• If more than one EE still is unresolved, then choose the minimum total costs of 

intercellular movement and subcontracting from all situations that might occur, and 
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compare them with the duplicating cost of machine /'. Select the alternative with the 

minimum value. 

(2) Rule 2. If more than one exceptional part that must be processed by the same machine, /, 

are in different cells, then compute the total costs of dealing with each EE and all its 

possible combinations recursively by using Rule 3; then select the optimal alternative with 

the minimum value. 

(3) Rule 3. If only one exceptional part in certain cells still must be dealt with, then the 

following process is followed: 

• If the available capacity of machine / is greater than the number of machines / needed to 

process part j, then the intercell units are equal to the latter, and the subcontracting units 

to zero. Otherwise, the intercell units are equal to the former, and the subcontracting 

units are equal to the subtraction value between them. 

• Calculate the total cost of intercell movement and subcontract and compare them to the 

cost of duplicating machine /. The optimal policy is the smaller one. 

Genetic Operators 

The reproduction operator is the same as in the traditional GA approach, which used the 

roulette wheel selection method. But crossover and mutation operators have been revised to 

improve efficiency. 

(1) Crossover operator. A two-phase processes was developed for the crossover. The first 

phase applies the single-point crossover operator to each pair of better-fit chromosomes. 

This process is similar to that in the traditional GA, except that the range of crossover 
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includes only part genes. Machine genes will be improved by means of mutation. To 

remedy the weakness of the traditional crossover operator, random crossover, the second 

phase applies the similarity coefficients (SCs) among parts to adjust the gene's value of 

parts. The SC presents the relation between pairs of parts. The closer the relation, the 

higher the SC value. In other words, if a pair of parts has a high SC value, they will have 

a high probability of being grouped together. The detailed heuristic process involved in 

the second phase is as follows: 

• Children to be performed are selected randomly according to a probability of 0.5. 

• A number between the range of [mean value ± variance] is generated randomly as the 

threshold similarity for comparison. 

• Starting from cell 1, a part belonging to that cell as the seed is selected randomly. Then 

the SCs between the seed part and the other parts are compared with the threshold 

similarity. If the SCs are larger, the part is merged with the seed part in that cell; 

otherwise, they are put in the next cell. This process repeats until all cells are examined. 

Regarding the approach to computing SCs, Shafer and Rogers [39] surveyed and 

analyzed most SCs proposed in the literature. Most SC formulae produce an unacceptable 

result - the fewer the number of cells, the higher the total SCs. That is, all parts are 

grouped together when total SCs are maximized. To eliminate this weakness, the current 

research follows the modification in [46], where the SCs between part J and part j' are 

defined as 
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SC jj' -(2(^ - b - c)l{2a + h + a) for ally 5^ j' 

= 0 otherwise, (1) 

where a is the number of machines that both part j and part j' tour, b is the number of 

machines that part j' tours, and c is the number of machines that part j tours. 

(2) Heuristic mutation operator. The traditional mutation operator mutates gene value 

randomly, according to the probability of mutation; thus, it might not offer a positive 

direction to reach the global optimal point directly. The proposed heuristic mutation 

consists of two steps. The first step, called mutation 1, determines the gene value for each 

machine. The process works as follows: 

• The total number of parts needing to be processed by every machine in each cell is 

computed, and the maximum number selected. If there is a tie, one of them is chosen 

randomly from the ties. 

• Eventually the selected value is assigned to the related machine chromosome. 

The second step, called mutation 2, updates the gene value for each part. The process 

is similar to mutation 1, except that the total number of parts needed to be processed by 

every machine in each cell is replaced with the total number of machines used by each part 

in each cell. 

Determination of System Parameters 

The proposed heuristic GA is fairly robust. The dependence on system parameters has 

decreased. For instance, good results always can be generated in fewer than three generations 

with the population size fixed at 10, and there is no need of using a mutation probability. 
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Also, the crossover probability simply can be generated randomly, ranging between 0.5 to 1.0, 

without impacting the results. 

NUMERICAL ILLUSTRATION 

To explain the fundamental logic of heuristic crossover and mutation, a simple problem 

from [48] is selected for illustration. The data set consists of 5 machines and 7 parts and can 

be grouped into two cells. Table 2 shows the machines/parts matrix, the unit cost values 

randomly generated based on the mean value and the standard deviation in [38], and the 

corresponding part similarity coefficients. 

Crossover 

Suppose that the two following chromosomes are selected from initial populations; 

initial 1: 2 1 1 2 2 2 2 1 2 2 1 1 and 

i n i t i a l  2 ;  1 1 2 2 2 2 1 1 1 1 2  1 .  

(1) Phase 1; Single-point crossover operator. Assuming that the crossover point is selected 

randomly between positions 8 and 9, the results of crossover are 

Parent 1:2 1 1 2 2, 2 2 II 2 2 1 1 Child 1:2 1 1 2 2, 2 2 1| 1 1 2 1 
X => 

Parent 2: 1 1 2 2 2, 2 1 1| 1 1 2 1 Child 2: 1 1 2 2 2, 2 1 11 2 2 1 1 

(2) Phase 2: Heuristic recombination. Three steps are implemented for part genes: 

® Select children for recombination. Suppose that only child 1 is selected; then Child 2 is 

unchanged. 
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Table 2: Nunierical Data for Illustration 

(a) The Machines/Parts Matrix 

PARTS 
1 2 3 4 5 6 7 

1 0 1 0 1 0 0 1 
M 2 0 0 1 0 1 0 0 

/ 3 1 1 0 1 0 0 1 
C 4 1 0 1 0 0 1 0 

5 0 0 1 1 1 1 0 

(b) Cost Information 

PARTS 

I 2 J 4 5 6 7 A(/) C(/) 
1 0.00 4.82 0.00 3.69 0.00 0.00 3.69 58352 2000 

M 2 0.00 0.00 2.83 0.00 1.94 0.00 0.00 72451 2000 
/ 3 3.72 1.78 0.00 2.60 0.00 0.00 3.54 70153 2000 
c 4 2.32 0.00 3.46 0.00 0.00 2.54 0.00 47670 2000 

5 0.00 0.00 2.81 4.50 3.73 3.56 0.00 64495 2000 

m 37537 35051 28443 40300 34731 29405 37416 
S(/) 1.71 2.00 1.81 2.37 3.85 2.06 3.09 
!(/•) 5.33 6.24 6.68 4.51 6.02 4.76 6.61 

(c) Similarity Coefficients Between Parts 

1 2 J 

PARTS 
4 5 6 7 

1 0.00 0,00 -0.20 -0.20 -1.00 0.00 0.00 
P 2 0.00 0.00 -1.00 0.60 -1.00 -1.00 1.00 
A 3 -0.20 -1.00 0.00 -0.33 0.60 0.60 -1.00 
R 4 -0.20 0.60 -0.33 0.00 -0.20 -0.20 0.60 
T 5 -1.00 -1.00 0.60 -0.20 0.00 0.00 -1.00 
S 6 0.00 -1.00 0.60 -0.20 0.00 0.00 -1.00 

7 0.00 1.00 -1.00 0.60 -1.00 -1.00 0.00 

Mean value of SCs ; -0.1932 
Variance of SCs: 0.3664 
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• Compute the possible range for generating the threshold similarity. Because the mean 

value of SCs in the example is -0.1932 and the variance 0.3664, the possible range is 

[-0.5596, 0.1732]. 

• Implement the heuristic crossover. Currently, in child 1, parts 3, 4, 5, and 7 are in cell 

1. Hence, the list of possible seed candidates is { 3, 4, 5, 7 }. Assume that part 3 was 

selected randomly as the seed part. After comparing the SCs between part 3 and the 

other parts with threshold similarity (0.04 is generated randomly), only parts 5 and 6 are 

qualified. Thus, the new cell # 1 contains parts 3, 5, and 6; and the other parts belong 

to cell # 2. The result after crossover are 

Child 1:2 1 1 2 2, 2 2 1 2 1 1 2 and 

Child 2:1 1 2 2 2, 2 1 12 2 1 1 (Child 2 is not changed). 

Mutation 

Two steps are involved in the mutation heuristic. Mutation 1 is applied for the machine 

genes and then the part genes are adjusted by means of mutation 2. Tables 3 and 4 

respectively illustrate the process of heuristic mutation for children 1 and 2. Final clustering 

results are summarized in Table 5, where child 1 is the best solution that can be achieved in 

data set 1. 
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Table 3; The Process of Heuristic Mutation for Child 1 

C h i l d  1 : 2  1  1  2 2 ,  2 2  1  2  1  1  2  

Mutation 1: Total number of parts needing to be processed by each machine in each cell are; 

Machines 
Cell 

Ml M2 M3 M4 M5 

CI 0 2...' •• 0 3 CI 0 0 3 

C2 0 1 1 C2 0 1 1 

Gene value 2 1 2 1 1 

After mutation 1: 21211, 2 2 1 2 1  1 2  

Mutation 2; Total number of machines used by each part in each cell are: 

Parts 
Cell 

PI P2 P3 P4 P5 P6 P7 

CI I - 0 •J',.:. . 1 2  0 

C2 1 2 0 2 • 0  0 WMM-

Gene value 9* 2 ^ 1 2 ^ 1 1 2  

After mutation 2: 21211,2212112 

* This value was selected randomly because of the tie. 
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Table 4: The Process of Heuristic Mutation for Child 2 

Child 2: 1 1 2 2 2, 2 1 1 2 2 1 1 

Mutation 1: Total number of parts needing to be processed by each machine in each cell are; 

Machines 
Cell 

Ml M2 M3 M4 M5 

CI 2 2 

C2 1 1 2 ^ 1 2 

Gene value 1 1 * 2* 1 2* 

After mutation 1:11212,21 1221 1 

Mutation 2; Total number of machines used by each part in each cell are: 

Parts 
Cell 

PI P2 P3 P4 P5 P6 P7 

CI 1 1 §MM 

C2 1 1 1 1 1 

Gene value 1* 1* 1 2 1* 2* 1* 

After mutation 2: 11212, 1112121 

* These values were selected randomly because of the tie. 
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Table 5: The Output of the Proposed GA for Children 1 and 

Child 1: 2 1 2 1 1, 2 2 1 2 1 1 2 

Pans 
3 5 6 12 4 7 

2 1 1 0 0 0 0 0 
4 10 0 0 
5 I 1 1 0 0 10 
1 0 0 0 0  1 1 1  
3 0 0 0 I 1 1 I 

Group efficacy = 0.700 
Number of EEs = 2 

Total costs of dealing with EEs = $ 151,848 

Child 2: 1 1 2 1 2, 1 1 1 2 1 2 1 

Parts 
1 2 3 5 7 4 6 

1 0 i 0 0 1 1 0 
2 0  0  1 1 0  0 0 
4 10 10 0 0 1 
3 1 1 0  0  1  1 0 
5 0  0  1 1 0  

Group efficacy = 0,346 
Number of EEs = 7 

Total costs of dealing with EEs = $ 413,576.25 
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COMPUTATIONAL EXPERIENCE 

Data Sets for Comparison 

To evaluate the relative performance among the proposed heuristic GA, the MP model, 

and the traditional GA approach, 17 data sets collected from the open literature are used. 

These data sets have been explored in a number of studies [10] [11] [12] [43], and their 

related characteristics are listed in Table 6. The additional numerical values for required 

parameters, such as the processing time of each part, the cost involved, and the part demand 

are generated randomly by a computer program, according to the mean value and the variance 

of data set 4 in [38], 

Computational Results 

To solve the MP models, this study used the LINDO (linear interactive and discrete 

optimizer) package running on an IBM compatible 486 DX2 66 MMZ computer. The GAs 

are coded in ANSI C and run on two different computers - the DECstation 5000 model 240 

workstation (for comparisons with the traditional GA) and the IBM compatible 486 DX2 66 

MHZ computer (for comparisons with MP). Clustering performances were measured in terms 

ofEEs [10], CPU times, and grouping efficacies (GE) [27], The desired cell number and the 

A(/Wvalues were quoted from related references. Table 6 also summarizes the computational 

results of MP and the proposed heuristic GA. To examine that the heuristic crossover 

operator or the heuristic mutation operator enhances the computational effectiveness, Table 7 

compares computational results of the proposed heuristic GA with those of the traditional GA 
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Table 6: Summary of Computational Results 
(Mathematical Programming vs. the Proposed GA Heuristic) 

NO. Size ^ 

(m X n) 

Matrix 

density 

#of. 

cclls Rcf. 

Mathematical 

Programming 

The Proposed GA Heuristic 
NO. Size ^ 

(m X n) 

Matrix 

density 

#of. 

cclls Rcf. NM No. 

of 
El-s 

Total 
costs 
(S) 

PC CPU 
time 
(see.) 

Max. popu. 

(gcncraiioits) 
NM No. 

of 
EEs 

Total 

costs 
(S) 

PC CPU 
lime 
(sec.) 

1 5x7 0.457 2 [48] 2 151,864 5.12 10(1) 3 2 151,848 0.22 

2 8x20 0.381 3 16] 4 9 600,553 5602 20(1) 4 9 600,719 0.275 

3 9x9 0.395 3 [19] 4 6 289,159 607.1 20 ( 1 )  4 6 289,148 0.495 

4 9x 10 0.322 3 [38] 4 9 -441,233 4979 60(1) 5 8 434,316 0,64 

5 10 X 12 0.30 3 [36] 5 1 65,478 177.2 10(2) 5 1 65,478 0.22 

6 12 X 10 0.317 3 [32] 5 6 237,477 1024 10(2) 6 5 220,948 0.659 

7 12 X 19 0.33 J 150) 6 19 Syi,S27 21723 30(3) 7 17 875,470 2.143 

8 14 X 24 0.182 4 [26] 4 2 209,660 6082 20 (4) 4 2 209,660 1.923 

9 15 X 10 0.307 3 [4] 5 0 0 42.6 10(2) 5 0 0 0.495 

10 16 X 30 0.242 4 [43] 6 19 
- - 30 (4) 6 19 1,076,797 4.725 

11 16x43 0.183 4 13| 7 21 
- - 30(5) 7 21 984,119 8.132 

12 20x35 0.194 4 [31 6 2 100,550 57882 10(2) 6 2 100,550 1.099 

13 24x40 0.127 7 [7] 6 0 0 6100 10(2) 6 0 0 2.253 

14 24x40 0.135 7 [7] 6 U) 
- - 30 (2) 6 10 570,654 5.165 

15 30x41 0.104 5 128) 9 10 - - 60 (5) 10 10 459,014 37.75 

16 30x50 0.102 4 [41] 13 0 0 3289 10(2) 13 0 0 3.74 

17 40x100 0.105 10 [8] 8 36 
- - # # # # # 

+ m: the total numbers of machine types; n: the total numbers of part types. 

- The computer running time is larger than one day (86,400 seconds), 
# Cannot be run in a PC due to the memory overflow. 
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Table 7: Summary o f  Computational Results 
(TheTraditional GA vs. the Proposed GA Heuristic without Using SCs or the Proposed GA Heuristic) 

Data 
Traditional GA * The Proposed GA Heuristic A A The Proposed GA Heuristic A* 

Data (Only Using Heuristic Mutation) 
Set Max. popu. Cost CPU time Matcil Max. popu. Cost CPU time NM Max. popu. Cost CPU time NM 

(gcneralions) 
(# of EE) in W.S. MP (generations) (# of EE) in W.S. (generations) (# of EE) in W.S. (# of EE) 

(seconds) (seconds) (seconds) 

1 20 (5) $151,848 0,14 Yes 10(1) $151,848 0.031 3 10(1) $151,848 0.051 3 

(2) (2) (2) 

2 800 (48) $600,719 217.8 Yes 20(1) $600,719 0.235 4 20(1) $600,719 0.285 4 
(9) (9) (9) 

3 200 (15) $289,150 8.019 Yes 30(1) $289,148 0.227 4 30(2) $289,148 0.340 4 
(6) (6) (6) 

4 800 (100) $447,877 306.9 No 100(12) $441,233 2.945 4 50 (5) $434,316 0.977 5 
(10) (10) (8) 

5 500 (19) $65,478 36.54 Yes 50(2) $65,478 0.543 5 10(2) $65,478 0.082 5 
(1) (1) (1) 

6 500 (5) $237,447 12.2 Yes 40(5) $237,447 0.687 5 10(2) $220,948 0.121 6 
(6) (6) (5) 

7 800 (100) $1,124,925 519.8 No 500(3) $891,827 14.066 6 30 (3) $875,470 0.966 7 
(22) (19) (17) 

8 800(100) $494,869 671.5 No 50(4) $209,660 2.301 4 20(1) $209,660 0.418 4 
(7) (2) (2) 

9 50(1) $0 0.664 Yes 10(5) $0 0.34 5 10(1) $0 0.098 5 

(0) (0) (0) 
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Data 
Traditional GA * The Proposed GA Heuristic ** The Proposed GA Heuristic * A 

Data (Only Using Heuristic Mutation) 
Scl Max. popu. Cost CPU time Match Max. popu. Cost CPU time NM Max. popu. Cost CPU time NM 

(generations) (# of EE) in W.S. 
(seconds) 

MP (generations) (# cfEE) in W.S. 
(seconds) 

(generations) (# of EE) in W.S. 
(seconds) 

10 800(100) 51,774.097 
(38) 

994.8 No 100(9) $1,076,797 
(19) 

8.581 6 20 (4) $1,076,797 
(19) 

0.678 6 

11 800(100) $2,381,996 
(42) 

1293.7 No 100(5) $984,119 
(21) 

7.742 7 50 (3) $984,119 
(21) 

3.875 7 

12 800(100) $1,698,190 
(39) 

1321.6 No 50(1) $100,550 
(2) 

2.172 6 10(1) $100,550 
(2) 

0.418 6 

13 800(100) $2,791,835 
(49) 

1979.1 No 50(6) $0 
(0) 

8.222 6 10(2) $0 
(0) 

1.469 6 

14 800(100) $2,395,065 
(46) 

2098.2 No 50(5) $570,654 
(10) 

8.054 6 20 (4) $570,654 
(10) 

4.828 6 

15 800(100) $2,062,305 
(32) 

2022.7 No 500(12) 5464,680 
(10) 

228.58 9 50 (10) 5459014 
(10) 

33.15 10 

16 800(100) $3,531,819 
(35) 

1303.8 No 50(14) $0 
(0) 

18.378 13 30(3) $0 
(0) 

2.715 13 

17 800(100) $16,502,678 
(273) 

17751. No 100(2) $2,347,667 
(36) 

93.1 6 50 (3) $2,347,667 
(36) 

45.3 6 

* This resuh was tiie best obtained from running algorithm ten times with different seed values. 
** All results matched the optimal solution of mathematical programming. 
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and those of the proposed heuristic GA not using the heuristic crossover (We called this a 

Minor Modification of the proposed GA Heuristic). For supposes of comparison, maximum 

population size and maximum generations for the traditional GA are set at 800 and 200, 

respectively. Certain parameters such as seed, crossover probability, and mutation probability 

are adjusted to produce a better-fitting solution. Several observations can be made regarding 

these computational results: 

First, when the performances of computational efficiency and clustering results are 

compared, the proposed heuristic GA performs best, the minor modification of the heuristic 

GA (MHGA) second best and the traditional GA and the MP approaches third and fourth 

best. This ranking can be justified as follows: 

(1) The proposed heuristic GA not only can obtain the same clustering solutions as most MP 

approaches can, but its CPU computational times also are much shorter, especially if the 

data set has more than 10 EEs. Moreover, once problem size increases, it is impracticable 

to use the MP to solve the problem; the proposed heuristic GA takes less than four 

seconds in a 486/66 PC to solve small and medium size data sets and less than one minute 

in a workstation to solve a large problem (data set 17). 

(2) As for the other three approaches, the performance of the MHGA is much better than that 

of the MP or of the traditional GA. Like the proposed heuristic GA, the MHGA not only 

can obtain the exact optimal costs, as can the MP, but also has a much shorter CPU 

running time. The larger the problem, the better MHGA's efficiency. 



www.manaraa.com

104 

(3) Although the traditional GA can reach the optimal point easily in small data sets, it fails to 

find the solution under the default parameters when data sets need to be grouped into 

more than three cells. An optimal solution might be obtained, however, by adjusting 

system parameters. For instance, in data set 8, the values of population sizes, numbers of 

generations, and CPU running time to obtain the optimal solution are 3,000, 23, and 1,072 

seconds, respectively. General computational performances still are better than those of 

the MP under suitable parameters. 

The first two results just described demonstrate that the contribution of the proposed 

heuristic - whether crossover or mutation - is positively significant. Applying these two 

heuristic operators simultaneously makes the GA useful in real world applications. 

Second, the value is difficult to specify in practice. If it is too small or too large, the 

clustering resuhs will be unreasonable. The proposed heuristic has the advantage of obtaining 

the better solution under an unrestricted NM value. As can be seen from Table 6, in data sets 

4, 6, 7, and 15, whhout specifying NM value, the proposed heuristic automatically can obtain 

a lower total cost value (the objective function of the mathematical model) and a smaller EE 

number than the MP approach can. The main reason for this advantage is that the results of 

the latter approach are somewhat limited by NM value. Meanwhile, the proposed heuristic 

not only can provide a feasible answer, it also lists two of the best alternative solutions. This 

provides flexibility for users in the selection of final results to fit their own environment. 

Third, the computational time of the MP approach increased significantly when the data 

set had more EEs (was more complex); the CPU time for the proposed GA, however. 
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increased only slightly. For example, data set 14 is modified from data set 13 (add ten more 

EEs). The PC CPU time for amning the MP model increased from 6,100 seconds to more 

than one day, but both data sets were solved in 2.253 seconds and in 5.165 seconds by using 

the proposed GA. This demonstrates that the proposed GA heuristic is suitable for large scale 

applications. 

Fourth, the proposed GA is less sensitive to the parameters used than the traditional GA 

procedure is. For instance, most data sets can be solved under the following given parameter 

values: (1) population sizes less than or equal to 40 (e.xcept data sets 4 and 17); (2) 

generations less than or equal to 3; (3) seed for random number generation fixed at 1234; (4) 

the probability of crossover randomly generated; and (5) no probability of mutation needed. 

As can be seen from Table 7, traditional GA suffers from the determination of these 

parameters. Even after much fine tuning, most data sets still cannot obtain the same results as 

the proposed GA heuristic can. In this regards, the proposed GA is a more robust and 

friendly algorithm for decision makers because they do not need to decide the values of 

parameters. 

Finally, ahhough cost results of the proposed GA and of the IVIP might be somewhat 

different because of the rounding error in the MP model, the clustering results and the 

alternative method for dealing with EEs are the same (e.g. machine duplication, intercell 

movement, and subcontracting), a feet demonstrating that the proposed heuristic algorithm for 

computing the optimal cost of dealing with EE does work and can evaluate the exact fitness 

value of every chromosome. 
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CONCLUDING REMARKS 

An improved GA was proposed to solve a CF problem. The proposed heuristic reflected 

a major enhancement in three directions; (1) considering the similarity coefficients between 

parts in the heuristic crossover to reassign the gene's value for each part; (2) creating a 

heuristic mutation operator to mutate the genes' values of machines and parts; and (3) 

developing a rule-based heuristic algorithm to compute the fitness value for each 

chromosome. From the computational analyses, two conclusions are drawn. 

First, the proposed genetic algorithm heuristic outperforms both the mathematical 

programming and the traditional GA in terms of computational etTiciency and of clustering 

results. In particular, even if problem sizes become large, the proposed heuristic still can 

complete the search in less time than the other two approaches can. 

Second, the proposed heuristic has a number of user-friendly properties: (1) It does not 

require specification of system parameters, such as the maximum number of machines allowed 

in each cell and the crossover and mutation probabilities. (2) It displays all feasible solutions 

in the report. In this case, a solution might not be obtained from the MP approach. (3) It can 

obtain the optimal solution for any possible cell number in one execution. Thus, it also relaxes 

the need for deciding the number of cells, a very difficult task in CF. All these benefits 

promote use in real-world applications. 

Considering problem characteristics in the GA to optimize the total cost of dealing with 

EEs seems a promising approach. Based on the results of this research, it should be possible 
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to modify the heuristic fitness algorithm to solve any other CF problems or to modify related 

heuristic operators to solve other complicated combinatory problems. 

APPENDIX: THE FORMULATION OF MATHEMATICAL 

PROGRAMMING MODEL 

Notation Used 

The following notation was used to model the CF problem: 

Index Set 

i machine index; i = 1 , . . . ,  

j part index;7 = 1,..., n 

k cell index; A = 1, c 

Parameters 

Aj periodic cost of acquiring machine type / 

Cj periodic capacity of machine type / 

Dj periodic forecast demand for part j 

Ij incremental cost for moving a unit of part j within two cells 

NM maximum number of machine types allowed in each cell 

Pjj processing time of machine type / needed to produce part j 

Sj incremental cost of subcontracting a unit of part / for an operation 

SP set of pairs (/j) such that ay = 1 
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UCj j  utilization capacity of machine type / for parts j .  Value can be calculated by means of 

the equation Pj j  x Dj  jCj  

Decision Variables 

ICi( =1, if cell k is formed; 0, otherwise 

Mjjjf number of machines i dedicated to cell k for producing part j 

Ojjji units of part j to be subcontracted as a result of machines type / not being available 

within cell k 

Qi number of machines type / needed to process corresponding parts in machine cell 

Rjjf number of machines type / to be dedicated in cell k 

Ujjk = 1, if-̂ /yt = 1, and Yjĵ  = 0; 0 othewise 

Vijk = 1, if Yjjf = 1, and Xjĵ  = 0; 0 otherwise 

Xijf̂  == 1, if machine / is assigned to cell k\ 0, otherwise 

Yj]i = 1 ,  i f  p a r t  j is assigned to cell k\ 0, otherwise 

Zj j j f  number of intercellular transfers required by part j  as a result of machine type i  not 

being available within cell k 

Mathematical Programming Model 

The formulation is as follows: 

' E U A j R i k  +  H  S JjZ jjk + S S Sj0jjk (A1)  
k i  k { i j ) e s p  k { i j ) & s p  

Subject to; 
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2^,1=1'V/ (A2) 
k  = \  

Z Yjk = \yj (A3) 
,t = l 

m 
Z^,l<AM,V/t (A4) 

/ = 1 

Xik  Y jk  + Zi jk  + 0,yi + Mjj j^  -  Uj j i ^  = 0, V(/, j )  €i'/;.V/t (A5) 
U j  .  U C j j  ^  ^  

Z Mijk^Rik,^i-^^ (A6) 
(7,y) esp 

0 / ^  Z (/Cy(l-Ir//A-) + 1, V/ (A7) 
( / , y )e i7?  k  

Z Z ^Zijk^Qr 2 t/C,y{l-ZF;y^X V/ (A8) 
k{ i , J )esp^ i  { ' , j )&sp  k  

^ik'YjkMijk,Vijk = 0 or 1; = general integer (A9) 
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IV. ()FriMlZIN(J FUZZY CELL FORMATION PROBLEMS BY A HEURISTIC 

(JENETIC ALGORITHM 

A paper prepared for submission to Decision Science 

Chang-Chun Tsui, Chao-Hsien Chu, and Thomas Arnold Barta 

ABSTRACT 

Fuzzy linear programming (FLP) and fuzzy multiobjective linear programming (FMLP) 

have been shown in |22| and |23| not only to provide a better and more flexible way of 

presenting the problem domain, but also to improve overall performance, in larger problems, 

however, fuzzy mathematical programming (FMP) cannot meet the demands of real-world 

applications. A heuristic genetic algorithm (HGA) as proposed in [241 is used to coiTect this 

weakness. 

The current paper is an extension of the HGA that is based on new heuristic crossover 

and mutation operators to remedy the weakness of the traditional GA, namely that 

inappropriately selected parameters lead to poor clustering results and require added 

computational time. The HGA is based on different FMP models, and its performance is 

compared with FMP performance in terms of clustering results and computational efficiency. 

The HGA clearly outperforms the FMP model in terms of clustering results, computational 

time, and user friendliness. 
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INTRODUCTION 

Mathematical programming (MP) is a useful approach to modeling and optimizing a 

problem because it not only can obtain the optimal solution but also can be the basis on which 

heuristic approaches are developed. But most required elements in MP, e.g., goals, 

constraints, and coefficients, cannot be decided precisely with ease. For this reason, fuzzy set 

theory has been applied widely in MP during the last 25 years, and several problems have been 

solved very well. For instance, transportation [4|, location planning 11()|, air pollution [191, 

animal husbandry systems 125], and cell formation [221 all are single-objective problems. 

Reliability [16], project networks [11], transportation [1 ], forests [15], and cell formation [23| 

are multiple objective problems. 

Applying FMP to the cell formation (CF) problem is new. Cell formation is the first step 

and the key task in implementing cellular manufacturing (CM), which is not only one of the 

major applications of the group technology (GT) philosophy but also a valuable concept in 

world-class manufacturing and furthers the objectives of just-in-time (JIT) manufacturing and 

total-quality-management [21 [. The main aim of CF is to form suitable workcells by grouping 

similar parts and their related machines together. The CF process can be illustrated as (1) 

using part attributes (GT codes always used) or part routings (sets of parts with production 

similarities) to form part families; (2) using part routings or production data to form machine 

groups; and (3) combining part families with machine groups to form cells. A review of CF 

problems can be found in |7] [8] [IX] [26]. A major factor causing the clustering bottleneck 

in the CF problem is the exceptional element (EE), a part that needs to be processed by a 
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machine not in the same cell. Most prior research, however, removes EEs manually or deals 

with them after forming the initial cells. No study has attempted to deal with EEs and to form 

manufacturing cells simultaneously except two of our previous working papers [22] 123|. 

Furthermore, only these two papers model the CF problem in a fuzzy environment and verify 

that FMP performances excel over the traditional MP performance in terms of clustering 

results and executing efficiency. When problem size increases, as with the data set adapted 

from 113| and used in 122] 123], FMP performing efficiency deteriorates. Not-withstanding, 

HGA, a powerful heuristic search approach proposed in |22|, can remedy the problem. 

The HGA retains the spirit of the traditional OA, which imitates natural selection and 

biological evolutionary processes |3|, and by applying the characteri.stics of CF problem, the 

HGA replaces random procedures in crossover and mutation operators with a heuristic 

property. Hence, the HGA improves executing efficiency dramatically and decreases 

dependence on system parameters. The HGA was relatively efficient computationally and met 

the critical demands of real-world applications in 124]. The main motivation of this paper is to 

extend and to apply the HGA to the solving of FMP problems in 122] and [231, respectively. 

To solve the related CF problems, the HGA will be based on an FLP model, an FMLP model, 

and a goal programming (GP). The performance of HGA will be compared with the 

performances of the traditional FMP models. 
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MATHEMATICAL FORMATION OF FUZZY CELL FORMATION PROBLEMS 

Achieving optimal clustering results by grouping machine cells and part families 

according to a fuzzy (imprecise) ̂ ^oal (objective) and resources (constraints) is the intention of 

the fuzzy CF problem. Fuzzy mathematical programming is a suitable new approach to 

modeling this problem. Two of our previous papers [22] 123) have attempted to deal with 

EEs and to form workcells simultaneously under the fuzzy environment. There, two FMP 

models and a GP model were considered. The first FMP model was the FLP model in 122|. 

A min-add operator and a linear nonincreasing membership function were applied to optimize 

total cost of dealing with EEs under the fuzzy constraint. The second FMP model is the 

FMLP model in | 231. The puipose of this model is to trade off two conflicting objective 

functions in the cell formation (CF) problems - minimizing total costs of dealing with EEs and 

maximizing group efficacy (GE). Since, according to 123], the clustering results of the 

asymmetric model are the same as those of the symmetric model when the ratio Pc/Ps is equal 

to one, this paper considers only the asymmetric model. A GP model also was discussed in 

123] because it can obtain the same trade-off value as the FMLP model can. Hence, to verify 

that the HGA also can be applied in fuzzy CF problems, the three models just mentioned are 

used in this paper. Their MP formulations are listed in the Appendix. For a detailed 

explanation, refer to [221 1231. 

Notation 

The following notation was used in this paper. 



www.manaraa.com

120 

Index Sets 

Chp chromosome index; p  =  \  , . . . , pop j ; i ze  

/ machine index; i = 1 m 

j \ j '  part index;;,/= 1 n  

k  cell index; A'= 1,c 

p population s ize  index ;  p  =  1,..., pop_s i ze  

Parameters 

/\/ periodic cost of acquiring machine type / 

C[ periodic capacity of machine type / 

DJ periodic forecast demand for part j  

F the total fitness of populations 

• tp  the fitness value for each chromosome 

Ij incremental cost for moving a unit of part./ within two cells 

NM maximum number of machine types allowed in each cell 

NMCj^  to ta l  number  o f  mach ine  types  in  ce l l  k  

P^. the tolerance value for the fuzzy cost objective function 

PY tolerance values for the fuzzy NM constraints 

/'y the tolerance value for the fuzzy similarity coefficient objective function 

Ph^. the probability of crossover 

Phfji the probability of mutation 
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Php the probability of reproduction 

c j p  the cumulative reproduction probability for each chromosome Chp 

SCjf the similarity coefficients between part j and part j" 

Wc the priority weight for the cost function 

VV.v the priority weight for the similarity coefficient function 

zl- the worst (largest) value of cost function 

Z V the worst (smallest) value of similarity coefficient function 

zP the best (smallest) value of cost function 

z[v the best (largest) value of similarity coefficient function 

Decision Variables 

clc^ the deviation variable for the cost function 

cIs  the deviation variable for the similarity coefficient function 

number of machines / dedicated to cell k for producing part / 

Oijĵ  units of part j to be subcontracted as a result of machines type / not being available 

within cell k 

Xji^ =1, if machine / is assigned to cell k; 0, otherwise 

Yjj^ =1, if part / is assigned to cell k\ 0, otherwise 

Zijĵ  number of intercellular transfers required by part / as a result of machine type ' not 

being available within part cell k 
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HEURISTICAL (JENpmC ALCJORITHM 

The Intruductiun of Heuristical (lenetic Algorithm 

The HGA is an improvement over traditional GAs, which are methods of direct random 

search that work according to the biological reproduction process. Based on a powerful 

searching ability, that is, (1) considering and evaluating many feasible points in the search 

space simultaneously and (2) applying probabilistic theory to direct the search, GAs are 

employed to solve certain nonpolynomial (NP) hard class problems - for instance, facility 

layout problems 1241. Figure 1 shows the traditional GA procedure. Key steps include (1) 

selecting the fitness function from the mathematical model; (2) detlning the representational 

chromosome scheme; (3) determining system parameters; (4) generating initial populations; 

(5) using the reproduction operator to produce better-fitted populations; (6) using the 

crossover operator; and (7) using the mutation operator. Two major weaknesses in GAs can 

be found. First, unsuitable system parameters lead to poor performance. Second, random 

crossover and mutation diminish executing efficiency. Based on the structure in Figure 1, the 

HGA applies certain heuristics related to characteristics of the CF problem in the last two 

steps to remedy these two weakness and to improve executing efficiency. 

( I )  C r o s s o v e r .  T w o  m o d i f i c a t i o n s  a r e  i n c l u d e d .  F i r s t ,  a b o u t  t h e  c r o s s o v e r  r a n g e  f o r  u s i n g  t h e  

single-point crossover operator, the HGA is limited only to parts genes. Second, a 

heuristic based on similarity coefficients (SCs) between parts is applied in the HGA after 
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1. Develop a mathematical model for the problem. 

2. Define the chromosome and its representational scheme. 

3. Determine system's parameters, such as population size, number of generations, 

crossover probability, and mutation probability. 

4. Generate initialize populations which satisfy constraints. 

Keproductiun. 

5. Compute the fitness value,, for each chromosome Ch,,. 

pop_ size 
fi. Calculate the total fitness of populations F,  F =  X /  .  

/' = 1 

7. Compute the reproduction probability for each Chp, Php = ̂  'yf: . 

p 
X. Calculate the cumulative reproduction probability for each Ch,„ q .,= YPhi-

/=1 

9. For each population /;, elect the best new population, p  <  pop_size. 

Generate a random number n  from a range of |0,11. 

If (/Kc/j) then choose Chi  

Else, if (qjj_i<n<qJ,) then choose Chi,,. 

Crossover, 

10. Selecting two chromosomes each time, C/7,,and Chp+i ,  p  <  pop_size-l. 

Generate a random number n from range of |(), 11. 

If (/; < Phc)  then choose a suitable operator and do the crossover. 

Otherwise, keep the same values of C/;,, and Chp+i. 

Mutation. 

11. Randomly select a bit / for mutation, (/ < pop_size x total length of a chromosome). 

Generate a random float number /i from the range |(), 11. 

If (// < Ph,„) then m.utate bit /. 

Figure 1. The (Jeneric Procedure of (Jenetic Algorithm 
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the single-point crossover is processed. This heuristic selects a part randomly (from cell 

one to cell NM-\) and merges other parts with an SC value larger than the threshold 

similarity value. The procedure groups higher similarity parts automatically. Hence, 

replacing the heuristic ba.sed on the problem characteristics with random crossover can 

ensure a positive search direction. 

(2) Mutation. Unlike the traditional GA, which mutates genetic values randomly, the HGA 

applies two heuristic methods to determine the gene value for each machine and to 

update the gene value for each part. For instance, in mutation 1, the first step is to 

compute total parts numbers (TP) required for processing by each machine in each cell. 

The second step is to assign the cell number with the largest TP value as the gene value 

for each machine. This new heuristic method is based on a characteristic of the CF 

problem - that of minimizing the number of EEs in clustering results - and can decrease 

.search space and save time for random mutation. 

The.se two improvements are, in fact, the main advantages of the HGA. They also lead to 

a number of u.ser-friendly characteri.stics that the traditional GA does not have. 

( 1 )  G e n e r a t i o n  o f  i n i t i a l  p o p u l a t i o n s .  A s  w i t h  t h o . s e  o f  t h e  t r a d i t i o n a l  G A ,  i n i t i a l  p o p u l a t i o n s  

of the HGA normally are generated randomly, and the method for handling constraints is 

the variable restriction method. The only difference between the HGA and the traditional 

GA is that the decision maker does not need to consider the NM value, which is not 

determined easily. This improvement improves usability for the decision maker. 
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(2) The determination of system purameters. Tiie values of certain required parameters such 

as population size, maximum generation numbers, crossover and mutation probabilities, 

and seeds are quite sensitive to GA implementation performance. Improper parameters 

will not lead to the optimal solution. The HGA is developed to remedy this weakness, for 

it need not consider the probabilities of crossover and mutation. The parameters required 

by the HGA are one seed, population size less than 100, and generation number less than 

five. This parameters lead to a HGA that is user-friendly. 

The Implementation of Heuristic ( ienetic Algorithm for Fuzzy Cell Formation Problems 

The HGA implementation procedure can be summarized as 1241: (1) Initialization. The 

string representation is defined, system parameters are decided, the fitness function is selected, 

and initial populations are generated randomly to satisfy problem constraints. (2) 

Reproduction. The roulette method is applied to select new better-fitted generations. (3) 

Heuristic crossover. (4) Heuristic mutation. The procedures for solving two FMP models 

and one GP model by means of a HGA are similar, the only difference lies in the method of 

calculating the fitness function for reproducing the best generation. The processes for 

computing the fitness function of three models follow: 

(1) The FLP model. The objective function of the FLP is to minimize the value of 

subtracting \ PO from the total costs of dealing with EEs: 

A' l  S I  2, S i 'O i j / ^~^P ()i (1) 
k  i  k  (/, /) e xp  k  (/, /) s sp  
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in which X is calculated from the fuzzy constraints: 

m 
I X i k  +  ̂ - P r ^ N M  +  p , . ,  \ / k .  (2 )  

(• = 1 

According to (2), the possible range of total machine numbers in each cell, NMCk. is NM 

through NM + Pj-. The possible range of k is in / NM through C, the maximum cell 

number. The value of X , therefore can be calculated by means of the formula 

Insert (3) in (1), and the fitness valuefor each chromosome Ch,, can be calculated. 

Because all possible cell numbers, k, and NM values must be considered for finding the 

optimal solution, the HGA algorithm must be run through two loops. The outloop is for 

checking all possible k values increased from nilNM to C; the inloop is for all possible 

NMCk ^^'ues increased from NM to NM + p,-. 

(2) The FMLP model. The fitne.ss function of FMLP is the same as that of Equation (1). But 

the equation for calculating X value is different because FMLP involves fuzzy inequations 

(4) to compute total SCs. Furthermore, in this paper, FMLP does not have fuzzy 

constraints (an asymmetric model), and Equation (5) is used to calculate X value. 

Therefore, the fitness value/^, for each chromosome C/?,, can be obtained by inserting (5) 

X = Miii\{NM + P,.- NMCk)IPr\'^ VA:. (3) 

in (1): 

(• n II 
I I I  S C  f j ' Y  i i c Y j ' k - ^ P s ^ z l - .  (4) 



www.manaraa.com

127 

c I I  I I  

?^ = (I I I S C j j ' Y j k Y  n - z \ ) / P s -  (5) 
A - i . /  =  i / ^ y  

(3) Goal programming. As with FLP and FMLP, based on the objective funcdon GP (A 14), 

the fitness value /^, of HGA for each chromosome C/;,. becomes 

f p ^  W c X ( l c ' ^ / P c  +  W s X c L s ~ / P s  • 

where ^/c^and ( I s  are calculated according to the related constraints - Equations (7) and 

(X): 

I.lAiRik + 1 I I jZijk + 1 1 SjOijk-(Jc-^ = z\l,-dn(\ (7) 
k  i  k { i , j ) e s i )  k { i , j ) e s p  

c n II 
I I I  S C  j j ' Y  j k Y  f l ^  + c L s ~  ( H )  

k  =  \ J  =  \ j ^  j "  

Modifying the related algorithm of computing , the entire implementation procedures 

of HGA based on GP and FMLP models are the same as those based on FLP model. 

COMPUTATIONAL EXPERIENCE 

To aid in the comparison of HGA performance with FMP and GP performances, nine 

data sets were used. The first three were copied from | 22| |23|. The other six were chosen 

from |24| according to these critical factors: (1) number of EEs greater than five, (2) number 

of machine types greater than 10, and (3) NM value not greater than X. The clustering results 

of data sets, therefore, will be affected gready by fuzzy constraints or objectives. If these 
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parameters were not enforced, it would not make sense to apply FMP, for the clustering 

results of FMP always would be the same as those of traditional MP. This paper assumes the 

NM value of the first five data sets to be "4," that of the last set to be "6," and that of the 

remaining three sets to be "5." The other relevant characteristics of these data set parameters 

are listed in the Table 1. Regarding the numerical values of required data sets, such as 

processing time for each part, costs involved, and part demand, these are generated randomly 

by a computer program based on the mean value and the variance of data set 1 in [ 17|. 

Based on three related FMP models, the evaluation function of HGA was modified and 

implemented to facilitate its comparison with FLP, FMLP. and GP in Tables 1, 2, and 3, 

respectively. This study u.ses the LINDO (linear interactive and discrete optimizer) package 

running on an IBM compatible 486 DX2 66 MHZ computer to .solve all models. The 

formulations required for running LINDO were generated by a generator coded in BASIC 

language. The GAs were coded in ANSI C and run in two different computer platforms: the 

DECstation 5{){)() model 240 workstation (for data set 9) and the IBM compatible 486 DX2 

66 MHZ computer (for the remaining sets). Performances were measured in terms of EE 

number |9|, CPU time, similarity coefficient |23|, and cost. Several observations can be made 

about the computational results. 

First, in terms of computational efficiency, the HGA is much better than FMP or GP in 

that CPU computational time is much shorter for the HGA. Moreover, as problem size 

increa.ses, it becomes impracticable to use FMP or GP to solve the problem (most data sets 

require more than one day). The HGA required less than four minutes in a 4X6/66 PC to 
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Table 1. Summary of Computational Results 
(The Heuristic Genetic Algorithm vs. Fuzzy Linear Programming) 

NO SIZE ^ Matrix MM yO Pc 
The Heuristic GA FLP@ 

(m X n) density iPr) (in $) (in $) Ref. Max. popu. 
(Generations) 

Cost 
(in $) 

CPU time" 

(seconds) 
NMc-^ No. 

EEs 

SCs Cost 

(in $) 

CPU time 
(seconds) 

1 9 .\ 10 0.322 4(2) 300,250 166,000 [17] 70 (5) 301,630 5.44 (4,5) 8 -6.59 301,695 1,139 

2 9 .\ 9 0.395 4(2) 161,930 121,000 [12] 30(4) 168,200 1.868 (4.5) 3 3.21 168,200 229 

3 14 .k24 0.182 4(2) 0 209,600 [13] 30(4) 67,774 5.714 (4,5,5) 2 2.38 67,758 1,398 

4 12 .\ 10 0.317 4(3) 154,487 225,305 [14] 30(4) 237,477 4.341 (3,4,5) 5 5.26 237,477 1,359 

5 12 x 19 0.33 4(3) 543,286 695,473 [27] 30(4) 675.239 6.154 (6,6) 14 3.34 675,796 55,748 

6 16 .\ 30 0.242 5(3) 645,599 742.194 120] 30 (4) 970.574 15.714 (6.4.6) 17 -12.7 - -

7 16.\43 0,183 5(4) 542,663 801,735 [2] 80 (5) 565,408 124.83 (3,6,7) 19 -94.6 - -

8 24 ,K 40 0.135 5 (3) 288,280 282,373 [5] 30(4) 445,427 184.56 (4,4,5,5,6) 8 13.99 - -

9 40x100 0.105 6(3) 1.929,433 418,234 [6] 90 (5) 2.043.226 206.11 (7,6,5,5,5, 

5.4,3) 

31 253.3 

+: ni: the total numbers of machine types; n: the total numbers of part types. 

# ; Data set 9 was run in the workstation owing to memory limitations of the PC. 

&: NMc; Number of machine types in each cell. 

The values of EE and NMc are same as those of the heuristic GA, 

-: Computer running time exceeds one day (86,400 seconds). 
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Table 2. Summary of Computational Results 
(The Heuristic Genetic Algorithm vs. Fuzzy Multiobjective Linear Programming) 

NO SIZE NM 7O Pc 
The Heuristic GA* FMLP® 

(in X n) iPr) (in $) (in $) Ps Cost 
(in $) 

CPU time 
(seconds) 

Max, popu, 
(Generations) 

NMc^ No. 
EEs 

SCs Cost 
(in $) 

CPU time 
(seconds) 

PC 

1 9.x 10 4(2) 300,125 226,709 0.41 5.87 325,784 7.198 70 (4) (4,5) 8 -2.66 325,892 5,138 

2 9.\9 4(2) 145,533 143,627 4.64 3.26 168,200 2.857 30(4) (4,5) 3 3.21 168,200 822 

3 14 .\24 4(2) 0 209,600 20.94 18.5 67,774 8.791 30(4) (4.5,5) 2 2.38 67,758 67,534 

4 12 .\ 10 4(3) 154,487 82,990 5.263 7.37 220,947 5.824 30(4) (3.3,6) 5 5.263 220,908 1,359 

5 12 x 19 4(3) 543,286 649.518 12.55 9.21 788.385 24.945 70 (4) (6,6) 14 7.391 - -

6 16 X 30 5 ( 3 )  645.599 448,941 22.73 97.48 939.332 10.67 20 (4) (7,4,5) 16 -4,293 - -

7 16 .x43 5(4) 542,663 860,799 13.63 153.5 1,102,827 155.28 70 (5) (7,4,3,2) 21 -21.85 - -

8 24 x40 5(3) 288.280 310,084 67.22 74,32 520,178 249,94 50 (4) (6,5,4,4, 

3,2) 

9 49.81 — 

9 40x100 6 (3) 1.929.433 418,2.34 350.1 196.2 2,108,586 229.55 60 (5) (6.5,5,5,5 

,4,4.3,3,) 

32 310.31 

# : Data set 9 was lun in the workstation owing to memory limitations of the PC. 

&: NMc; Number of machine types in each cell. 

The values of EE and NMc are same as those of the heuristic GA. 

- : Computer running time exceeds one day (86,400 seconds). 
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Table 3. Summary of Computational Results 
(The Heuristic Genetic Algorithm vs. Goal Programming) 

NO. SIZE NM Pc 
The Heuristic GA ^ Goal 

Programming® 

(m X n) (Pr) (in $) (in $) Ps Cost 

(in$) 

CPU time 
(seconds) 

Max. popu. 
(Generations) 

NMc^ No. 

EEs 

SCs Cost 

(in $) 

CPU 
time 

(seconds) 

1 9x 10 4(2) 300,125 226,709 0.41 5.87 325,784 7.473 70 (4) (4, 5) 8 -2.66 325,892 265,982 

2 9.\ 9 4(2) 145,533 143,627 4.64 3.26 168,200 3.022 30(4) (4,5) 3 3.21 168,200 2,244 

3 14 .\ 24 4(2) 0 209,600 20.94 18.5 67,774 8.846 30(4) (4,5,5) 2 2.38 - -

4 12 X 10 4(3) 154,487 82,990 5.263 7.37 220947.8 6.099 30(4) (3,3,6) 5 5.063 220,908 43,231 

5 12 X 19 4(3) 543.286 649,518 12.55 9.21 788.385 32.69 90 (5) (6.6) 14 7.391 - -

6 1 6 x 3 0  5 ( 3 )  645.599 448.941 22.73 97.48 939.332 26.429 30 (4) (7.4.5) 16 -4.293 - -

7 1 6 x 4 3  5 ( 4 )  542,663 860,799 13.63 153.5 1,102,827 205.8 100 (5) (7,4,3,2) 21 -21.85 - -

8 24 X 40 5 ( 3 )  288,280 310.084 67.22 74.32 520,178 264.95 50 (5) (6.5.4,4, 

3,2) 

9 49.81 — — 

9 40x100 6 (3) 1.929.433 418.234 350.1 196.2 2,108.586 266.28 60 (5) (6.5.5,5,5 

.4,4,3.3,) 

32 310.3 

1 

U : Data set 9 was lun in the workstation owing to memory limitations of the PC. 

&: I'^c: Number of machine types in each cell. 

The values of EE and NMc are same as those of the heuristic GA. 

- : Computer running time exceeds one day (86,400 seconds). 
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solve data sets of small or medium size (the first S data sets) and less than two minutes in a 

workstation to solve the largest problem (data set 9). Thus, the GA is an efficient algorithm 

and can meet real-world application demands. 

Second, in terms of clustering results as indicated by cost, NMc, EE, and SC, those of 

the HGA are the same as those of FLP, FMLP and GP. As in Tables 1, 2, and 3, when the 

available data sets are compared, the HGA can produce exactly what FMP and GP can. The 

HGA, therefore, is a suitable means of solving CP dealing with EEs. Note that only five of 

data sets in Table 1, four of data sets in Table 2, and three of data sets are available for 

comparison, because in later data sets FMP and GP have poor computational efficiency. 

Third, the HGA is user friendly. As stated in |24|, compared with the traditional GA, 

HGA seldom requires system parameters. Furthermore, there are three advantages to the 

HGA that FMP and GP cannot achieve: (1) relaxation of the requirement to execute the 

generator to build formulations; (2) display of the performances such as cost. EE, and SC in 

the output; and (3) easy plotting and reading of clustering results. (For the partial output 

achieved by implementing HGA, see Appendix B.) These differences demonstrate how 

friendly an algorithm HGA is for the decision maker. 

Fourth, in terms of all clustering results, the HGAs based on FMLP and GP models are 

exactly the same. Execution time for the former also is shorter than that for the latter. As can 

be inferred from Tables 2 and 3, all clu.stering results in terms of cost, NMc, EE, and SC are 

the .same; and the execudon times of all data sets in Table 2 are shorter than those in Table 3. 
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These findings confirm the conclusion in |23| that the FMLP approach outperforms GP in 

terms of execution time. 

Finally, clustering results can be obtained by applying FMLP that cannot be by applying 

FLP. Based on the FLP model, FMLP considers one more objective function, namely 

maximum SCs, to trade off cost and GE, and additional results are available to the decision 

maker. After the HGA is implemented, the clustering results of FLP and FMLP for all data 

sets can be obtained and compared. The SC value of FLP is not larger than that of FMLP 

except in data sets 2 and 3, which have a small complexity. (See Tables 1 and 2.). 

c()ncludin(j remarks 

In this paper, the HGA propo.sed in 124] was extended to .solve a CF problem in a fuzzy 

environment. The HGA evaluation function was modified according to FLP, FMLP, and GP 

models, and its results were compared with the results of the models. From the computational 

experience analy.ses, a number of conclusions can be drawn. 

First, the HGA is a good, practical algorithm. It not only can optimize fuzzy CF 

problems as the FMP and the GP do, it also outperforms these approaches in terms of 

computational efficiency. The HGA can satisfy the three required conditions of a good 

algorithm; (1) global convergence. The optimal .solution should be found for any starting 

point. No matter what the initial randomly generated points, the HGA will obtain the global 

optimal solution. (2) Convergence rate. The faster from X" to X*, the better the algorithm. 

Two special heuristic operators make the HGA converge to the optimal solution quite rapidly. 
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(3) Efficiency. A good algorithm is expected to calculate from easily. No 

complicated formulation or recunent algorithm exists in the HGA, and new generations can 

be computed quite easily by execution of a straightforward heuristic algorithm. 

Second, the HGA is a user-friendly algorithm. It has two user-friendly characteristics: 

(1) It displays all feasible solutions in terms of performance in the computational results, in 

which certain solutions might not have been obtained by FMP or GP approaches. (2) It 

considers only a few system parameters, e.g.. .seed, population size, and generation numbers, 

and does not need to execute a generator to build the formulation. 

These advantages promote usage of the HGA in real-world applications. Obviously, 

using the HGA to optimize fuzzy CF problems is a promising approach. Although scheduling 

and layout problems have been solved by the GA approach in previous studies |24|, such 

problem have been small; and computational efficiency still is a weakness in the application of 

GA to larger problems. Hence, based on the results of this paper, we are confident that the 

HGA can be applied to .solve .scheduling and layout in workcells that also are CM problems or 

to modify related heuristic operators to solve other complicated combinatory problems. 

appendix a: the formulation of fuzzy mathematical 

pr()(;rammin(J  models 

The formulations of two fuzzy MP models and a GP used in this paper, with their related 

operator and membership function, are listed as follows: 

(1) Fuzzy Linear Programming 
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After the inin-udd operator and the linear non-increasing membership function are used 

the formulations of FLP are 

Mil, XI Rif, +1 I  /  jZijk + I  X S jOijk - ̂ / ' o . 
k I kiLj)e sj) k {i, j) e sp 

subject to 

1 1 ^ Z i j k  ̂ Q i -  I  u c i j { \  - 1  V i j k ) ,  V /  

k(i,i)esn^i (i,i)esi) k 

(Al) 

tn 
Y.Xik  +  'kPr^NM +  P , . , \ Jk  (A2)  

i  = 1 

V/  (A3)  

A = 1 

(A4)  
A- = r 

l i e  I :  > 2  (A5)  
A- = 1 

m 
'ZXi ic>2lCk^^k  (A6)  

/ = 1 

1 1 ] 
X i k  y  j k  + .  Z i j k  + .  C/ /A +  Mijk -  //A V( / ,  y )  e  a / ; ,  VA (A7 )  

LJj u, . UCij ^ •' 

I  Mijk^Rik ,  V/ ,  VA (A<S)  

(i,j)esp 

Qi < I  iVC,7  (1  - 1  Vilk)  +  1,  V/  (A9)  

{ij)esp A 

(AlO) 
: (/,7)e.s7; (/,./) e.v/; 

/A' /A' U ijk' V = 0 «/• I; RikQi ̂  general integer (A 1 

(A!) and (A2) are the equivalent transformed formulations of (A 12) and (A 13) after 

applying the add-min operator. Constraint sets (A3) and (A4) ensure that each machine 
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m 
J .Xi i^<NM ,yk  (A12)  

( = 1 

L L A I R I K + L  1  I J Z I J K  +  I .  I S J O I J I : < Z ^ ^ = Z ^ - P ( )  {A13) 
k i k{i,j)esp k(i.j)esp 

and part is assigned into only one cell. Constraint (A5) prevent cell number less than "•2." 

Constraint set (A6) prevents clustering results in fewer than two cells. Constraint set (A7) 

guarantees that the demand of exceptional part j can be shared by the combination of 

duplicated machine / transferred within cells and subcontracted. Constraint set (AS) calculates 

the number of machine type /s needed to be dedicated in cell k for producing exceptional 

parts. Constraint set (A9) determines the number of machine type i needed in each cell. It 

sums all the utilization capacities of machine type i for all relative parts J ( X ^Cij) not 

belonging to the EEs (1 - HVijj^). Constraint set (A 10) ensures that the numbers of 
k 

intercellular transfers between machines type / do not exceed the available machine capacity. 

(2) Fuzzy Multiobjective Linear Programming; 

The formulations of FMLP with the asymmetric model are the same as those of FLP, 

except replacing (A 14) with (A2). 

c  a  n 
I I I  S C .  j j ' Y  j k Y  j ' k - ' ^ P s ^ z \  (A 14) 

k = l j = \ j' ̂  j 
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Constraint set (A14) is transformed from ( A15) by using the linear nondecreasing 

membership function. Constraint set (A 15) represents the total similarity coefficients is not 

less than zlv • 

(• n n 
I S I SC jj'Y ikY (A 15) 

(3) Goal programming: 

Replacing the objective function (A 16) with (Al) and constraints (A 17) and (AIS) with 

(A2), the formulations of GP are the same as those of the FLP. 

Min M/,..-^ + VVv.— (A16) 
Pc '  Ps  

llAiRik + 1 I ijZijk + 1 I SjOijk-(lc'^ = z\} (A 17) 
k i k{i,j)& sp k (/, j) s sp 

c II n 
1 1 1  S C j j ' Y  j i c Y  j ' k  +  ( l s ~ = Z ^ ^  (AIS) 

/; = 1 / = 1 y ^ /' 

After dividing by the related scale, p^. and p ̂ , total deviation value for total costs and 

SCs is minimized in Equation (A 16). Three types of costs associated with EEs are to be 

minimized to approach in constraint (A 17). Total similarity coefficients of the pairs of 

parts in all groups are maximized to zjs- (AIS). 
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APPENDIX B: AN EXAMPLE OF THE PARTIAL HEURISTICAL (iENETIC 

AL(;ORITHM OUTPUT 

The partial output of the HGA based on the FMLP for solving data set 6 (16 X 30) is 

listed. All clustering results in terms of execution time, EE, GP. SC, and the plot of machines 

and parts in cells are involved in an optimal solution. 

====> The execution time is 10.67 seconds 

The optimal solution is: 

1 1 3  1 2 3 1 1 3 2 1 1 3 2 3 2 1 1 2 1 3  2 1 2 1 1 2 1 3  2 2 1 2 1 3 1 2  
13 23 23 3 3 1614X43.25 16 0.556 -4.293 

In cell 1==> 

Machines=> 1,2,4,7,K, 11, 12, 
Parts===-> 1, 2, 4, 7, 9, 10, 12, 16, IX, 20, 22, 30, 

In cell 2=-> 

Machines=>5, 10, 14, 16, 
Parts==-=> 3, 6, 8, 11, 14, 15, 17, 21, 24, 26, 

In cell 3=:=> 

Machines=> 3, 6, 9, 13, 15, 
Parts==-=> 5, 13, 19, 23, 25, 27, 28, 29, 

The total numbers of machine i are set up in its machine cell: 

Q1 1 i = 5, Q1 21 = 5, Q1 31 = 5, Ql 41 = 6, Q1 51 = 7. Q1 6] = 4, 
Q|7|- 7,Q| S1= 7,Q| 91= 6,Q[1()|= 7,01111- 4.Q1121- 5, 
01131= 2, 01141= 6,01151- 5,01161= 4, 

The total numbers of machine i are duplicated in cell k: 

dupl 11131= l,dup|71131= l,duplX1131= Kdupllll|21= 1, 
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clup|12!|31= l,dup|13|| 1]= 3,dup|13|l 2|= 1, dup| 1411 3|= 1-
dupll51111= l,dup|15|[2]= l,dupll6111|= 1, dup| 161[ 31= 1, 
The total units of part j are subcontracted : 

o|41131= 4800, of! 91112]= 5159, o|27|116|= 6205, 

Total units of part j are transferred : 

zl41131= 1()23X.295, zllXlil01= 22122.()()0. z|ll 1| 1 11= 161.147, 
zl 1911121- 3222.446, zl 711161= 6963.3S6, zl27H 161= 10929.722, 

Total costs for dealing with EEs = 939332.2500 

1 2 47 910121618202230 3 6 HI 1141517212426 513192325272H29 

1 , 0 0 1  1  1 0 1 0 1 0 1  1 1 0 0 0 0 0 0 0 0 0 0  1 0 0 0 0 0 0 0  
2 ,  1 0 1 0 0 1 0 1  1  1 0  0 1  0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  
4 ,  0 1  1  1  1 0 0 0 1 0 1  1 1 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  
7 , 0 1  1  1 0 0 1 0 1 0 1  1 1 0 0 0 0 0 0 0 0 0 0  0 0 0 0 1 0 0 0  
8 ,  0 1  1  1  1 0 1 0 1 0 1  0 1  0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 1 0  

1 1 , 0 1 0 1  1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0  0 0 0 0 0 0 0 0  
1 2 ,  0 1  1  1 0 0 1 0 1  1  1  0 1  0 0 0 0 0 0 0 0 0 0  0 0 1 0 0 0 0 0  

5 , 0 0 0 0 0 0 0 0 0 0 0  0 1  1  1  1  1  1  1 0 1  1  1 1 0 0 0 0 0 0 0 0  
1 0 ,  0 0 0 0 0 0 0 0 1 0 0 0 1  0 1  1  1  1  1 0 1  1  1 1 0 0 0 0 0 0 0 0  
14. 00000000000 01 01 1 1 1 1 1 10 01 00000100 
1 6 ,  0 0 0 1 0 0 0 0 0 0 0  0 1  0 1  1 0 1  1 0 0 1  1 1 0 0 0 0 0 1 0 0  

3 ,  0 0 1 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 1  0 1 0 1  1  1  1  1 1  
6 , 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 1 0 0 0  1  1  1 0  1 1  
9 , 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 1  1 0 1  1  1  1  I  0 1  

1 3 ,  0 0 0 0 0 1 0 0 0 1 0 1  1 0 0 0 0 0 0 0 0  0 1  0 1 0 0 0 0 0  1 1  
15, 000000000001 00000000011 1001 1 1011 
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(JENERAL CONCLUSIONS 

The goal of this dissertation is to develop useful CF approaches to solving CF problems 

in a fuzzy environment. This thesis has proposed a traditional MP model for grouping parts 

and machines to cells and for solving the generic problem of dealing with EEs simultaneously. 

We also have developed a GP model that can obtain the trade off between minimizing total 

costs of dealing with EE and maximizing GE. Fuzzy linear programming and FMLP are 

successfully applied, and the results were shown to be better than traditional LP and GP. 

Eventually, a heuristic GA is proposed to remedy the weakness of FMP when solving big 

problems. Our experimental results have shown efficient performances, in particular, for big 

problems. 

This chapter summarizes the contributions of the dis.sertation. Several directions for 

future research also are suggested. 

Contributions 

The traditional mathematical model and FLP were proposed and compared in the first 

paper, which makes four major contributions. First, it proposes a sophisticated linear 

programming model that has the following functions: (1) it solves the generic CF problem 

and minimizes the total cost of dealing with EEs simultaneously. (2) It considers the model's 

available machine capacity. Then the policy for dealing with EEs is known exactly and is 

economical. (3) It determines the number of machines needed from the model. The model 

can calculate the co.sts of dealing with EEs and the minimum investment cost for machines. 
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Second, the paper applies the FLP approach for the first time to model CF problems. A state-

of-the-art review of FLP is presented. Fuzzy linear programming implementation procedure 

and related key issues are discussed. After reading this review, a novice should be able to 

apply FLP easily. Third, the paper proposes a new fuzzy operator that is efficient and robust. 

Fourth, it assesses the relative performances of different membership functions and operators. 

Results suggest a basis on which to select membership functions and fuzzy operators. 

The second paper makes three contributions. First, it proposes a suitable formula for 

making the relation between GE and SC in direct proportion - that is, for making SC value 

grow as GE does. This formula therefore can optimize GE value by maximizing total SC in 

the MP model. Second, the paper applies GP for the first time to obtain the trade-off between 

total costs of dealing with EEs and GE. Optimal cell numbers then can be deduced. Third, 

the paper compares an FMLP model with the new operator (proposed in the first paper) with 

GP performances. Fuzzy multiobjective linear programming is shown to outperform GP. The 

eminence of fuzzy set theory in MLP is confirmed. 

An efficient heurisdc GA is proposed and implemented in the third and fourth papers, 

whose two major contributions can be summarized as follows. First, new heuristic crossover 

and mutation operators are proposed to enhance the efficiency of implementing GA and to 

reduce the sensitivity of system parameters. Second, a heurisdc algorithm for compudng 

minimum total costs of dealing with EEs is developed to evaluate the fitness values of 

chromosomes. These two contributions make the HGA a powerful and user-friendly 

algorithm for solving a CF problem - for dealing with EEs even in the fuzzy environment. 
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The HGA not only can produce the same clustering results as the MP does, it also can 

outperform the MP approach in terms of computational efficiency. 

Future Research 

Applying FMP to CF problems i.s a relatively new strategy, and many research 

opportunities remain to be explored. There are at least four logical extensions of this thesis. 

First, the required modules for easily creating specified MP models of the CF problem 

can be developed. These modules can include objective functions, constraints, input data, and 

their generators. Mathematical programming is a basic approach to obtaining an optimal 

soludon and is a basis for developing heuristic methods. But developing an MP model to 

solve CF problems in the real world is quite complicated. Hence, designing all required 

modules and using an interface to create the MP model becomes essential. 

Second, application of FMP and comparison of the performances of all fuzzy operators in 

solving different practical problems can be attempted. The fuzzy operator is a key to 

implementing FLP and obtaining good results. It would be helpful to compare the 

performances of all operators in a number of different problems to determine which operator 

is most robust and efficient. 

Third, the HGA can be applied to solve the other CM problems. According to the results 

of applying the HGA obtained in this dissertation, it should be possible to modify the heuristic 

evaluation algorithm to solve other CM problems such as scheduling and layout in vvorkcells 

or to modify related heuristic operators to solve other complicated combinatory problems. 
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Finally, an intelligent fuzzy simulator can be developed. With the assistance of a fuzzy 

simulator, a user can plot and examine the membership function, study its impact and 

parameters, and display CP results on a real-time basis. This simulator will be capable of 

expanding (1) to allow users to call a generator to formulate an FMP model and to convert it 

to the conventional MP and (2) to integrate the GA algorithm to solve the MP problem. 
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